報告 低桁高波形鋼板ウェブPCT桁橋の開発

鈴木 宣政^{*1}・加藤 卓也^{*2}・大浦 隆^{*3}

要旨:プレストレストコンクリートT桁のウェブを波形鋼板とし,プレテンション工法とポ ストテンション工法の併用,波形鋼板上縁に溶接した補強材(溝形鋼等)を利用して桁上縁 に引張プレストレスを導入することで,低桁高でかつ軽量なプレストレストコンクリートT 桁橋を開発した。開発にあたり,実桁の1/2の試験桁を用いて引張プレストレス導入試験お よび曲げ載荷試験を実施し,構造特性と設計の妥当性を確認した。 キーワード:低桁高、波形鋼板、プレストレストコンクリート、引張プレストレス、実証試験

1. はじめに

河川橋や都市内高架橋あるいは立体交差橋で は,計画高水位,交差道路や鉄道の建築限界, 周辺景観との調和等の条件から,桁高制限を受 ける場合がある。通常のプレストレストコンク リート(PC)桁橋の桁高を低くする場合には, 部材厚や PC 鋼材量を増す等の方法によりコン クリート応力が制限値を満足するように設計す る。しかしながら,桁高支間比が 1/25 以下とな るような著しい桁高制限を受ける場合には,桁 上縁コンクリートに制限値を越える圧縮応力が 生じるため,通常の PC 桁橋ではさらなる桁高の 低減は望めない。

著者らは、桁上縁圧縮応力を低減し、より低

桁高な PC 桁橋を実現する構造として「低桁高波 形鋼板ウェブ PCT 桁橋」を提案し,試設計にお いてその構造の妥当性を確認した¹⁾。本論では, 実橋へ適用するにあたり,実際の応力性状や耐 荷性能を確認する必要性から,実桁の1/2の試験 桁を用いて実証試験を行ったので,本構造の概 要と併せてその結果を報告する。

- 2. 構造概要
- 2.1 構造の特徴

本構造の概要を図 - 1 に示す。また,本構造 の特徴は以下の通りである。

1)主桁は波形鋼板ウェブを用いたT桁である。
2)プレテンション工法とポストテンション工

- *1 (株)ピーエス三菱 技術本部土木技術第一部 (正会員)
- *2 (株)ピーエス三菱 技術本部土木技術第一部
- *3 (株)ピーエス三菱 技術本部開発技術部長 (正会員)

図 - 3 引張プレストレス導入方法

法を併用して主桁を製作する。

- 3)波形鋼板の上縁に溶接した補強材(溝形鋼等)を利用して,桁上縁コンクリートに引張プレストレスを導入する。
- 4) 桁高は支間の 1/30 程度まで低くすることが 可能である。
- 5)有効な適用支間は 25m~40m である。
- 6)波形鋼板の使用により,上部工重量を低減で きる。

2.2 施工概要

主桁の施工ステップを図 - 2 に示す。はじめ に,支間中央部となるプレテンション部材を工 場またはヤードにて製作する。次にプレテンシ ョン部材を運搬・架設し,両端部の桁を構築す る。上フランジ側に配置した PC 鋼材を緊張定着 し,補強材に圧縮力を導入する。次に支間中央 部に仮支点を設置してから上フランジを打設す る。打設コンクリート荷重をまず仮支点で支持 し,コンクリート強度発現後に仮支点を撤去す ることで,上フランジ自重を断面全体で抵抗さ せる。次に,下フランジに配置したポストテン ション鋼材により,1次緊張として最終導入緊 張力の約1/2を導入する。最後に,支点を所定の 位置に移動,ポストテンション鋼材の2次緊張, その後上フランジ側の PC 鋼材緊張力を解放し て桁上縁コンクリートに引張プレストレスを導 入し,完成となる。 2.3 引張プレストレス導入方法

図 - 3は,引張プレストレス導入の機構につ いて示したものである。

まず, PC 鋼材を緊張し,補強材に設置した定 着プレートに定着することにより,補強材に圧 縮力を導入する。次に,補強材の圧縮力を保持 した状態で,上フランジコンクリートを打設し, 一体化する。最後に, PC 鋼材の緊張力を解放す ることで,補強材に導入されていた圧縮力が解 放され,補強材と一体化したコンクリートに引 張力が作用する。

以上のように引張プレストレスを導入するこ とにより,低桁高橋梁の設計で桁高を決定する 要因となる桁上縁圧縮応力を低減し,より低い 桁高が可能となる。

3. 実証試験

3.1 試験項目

本構造の応力性状や耐荷性能を確認するため に,以下の試験を行った。

(1)引張プレストレス導入試験

(2)施工時計測

(3)曲げ載荷試験

3.2 引張プレストレス導入試験

本試験は,波形鋼板上縁の補強材に導入した 圧縮力を解放することにより生じる断面の応力 分布を確認するために行った。供試体の形状寸 法を図 - 4に示す。供試体は,下フランジとウ ェブの製作,上縁側 PC 鋼材の緊張(118kN/本), 補強材に圧縮力を導入,上フランジ打設の順で 製作した。補強材の圧縮力解放は,2本の PC 鋼 材それぞれにセンターホールジャッキを設置し, 2本同時に緊張力を解放することによって行っ た。試験状況を写真 - 1に,コンクリートの特 性を表 - 1に示す。

補強材圧縮力解放直後の支間中央断面におけ る応力分布を図 - 5 に,上縁コンクリートの桁 軸方向応力分布を図 - 6 に示す。図中の応力は, コンクリート表面および軸方向鉄筋に設置した ひずみゲージの計測値に表 - 1 の弾性係数を乗

図 - 4 供試体形状寸法

表 - 1 コンクリート特性

緊張力解放時		圧縮強度 (N/mm2)	弾性係数 (N/mm2)	材令
コンクリート	上フランジ	51.0	27300	6
	下フランジ	63.5	30400	16

写真 - 1 引張プレスレス導入試験状況

図 - 5 断面応力分布 (-: 引張 / +: 圧縮)

じて算出した。

図 - 5から,断面の応力状態はほぼ設計値通 りの応力分布となっていることがわかる。また, 図 - 6から,供試体の端部付近まで所定の引張 プレストレスが導入されており,補強材を用い た引張プレストレス導入方法が有効な方法であ ることが認められる。

3.3 施工時計測

本構造の主桁は,図-2に示したように通常 のPC桁に比べ複雑な工程で製作される。そのた め主桁完成時において所定の応力が導入されて いることを確認する必要がある。そこで,図-2の施工ステップに従い主桁を製作し,主要施 工段階における主桁断面のひずみ分布を計測し た。供試体の形状寸法を図-8に示す。

図 - 7 に支間中央断面における各施工段階の ひずみ変化量の分布を示す。図中のひずみは、 コンクリート,補強材,軸方向鉄筋に設置した ひずみゲージにより計測した。設計値は,補強 材およびフランジコンクリート断面を有効とし, 波形鋼板ウェブ断面は無視して計算した結果で ある。計算における材料特性は,表 - 2 および 表 - 3 に示す材料試験値またはミルシートの値 を用いている。図 - 7 からわかるように,各施 工段階で実測値は設計値と良く一致している。 また,図 - 7 (d)より,引張プレストレス導入試 験と同様に,施工ステップに従い製作した本供 試体においてもほぼ設計値通りの引張プレスト レスが導入されていることが確認できる。

(a) プレテンション導入(桁自重含む)

(c) ポストテンション鋼材2次緊張

図 - 8 曲げ載荷試験供試体形状寸法

3.4 曲げ載荷試験

本試験は,低桁高波形鋼板ウェブ PCT 桁の耐 荷挙動の確認と,耐力算出方法の妥当性を確認 するために行った。

(1) 試験概要

供試体は,前述の施工時計測で製作したもの を用い,桁高支間比が1/30となり,実桁の約1/2 の大きさとなるような寸法を選定した(図-8)。 引張プレストレス導入用の補強材(溝形鋼)は, 支間中央部分のプレテンション・ポストテンシ ョン併用区間のみに設置されている。波形鋼板 とフランジコンクリートとの接合は,支間中央 部の上フランジでは補強材の溝形鋼を利用した パーフォボンドリブ接合,下フランジと桁端部 上フランジでは波形鋼板に溶接した接合棒鋼 (D13)と貫通鉄筋による埋込み接合である。上 フランジの圧縮力導入用 PC 鋼材は,緊張力解放 後に抜き取り,ダクトにはグラウトを充填した。

試験は,載荷点間距離 1500mm の静的 2 点載 荷試験によって行った。

(2) 実験結果

載荷荷重と支間中央鉛直変位の関係を図 - 9 に,最終破壊状況を写真 - 2および写真 - 3に 示す。荷重 75.0kN において載荷点直下の下フラ

表-2 コンクリート特性(曲げ載荷試験供試体)

位置	試験時期	圧縮強度 (N/mm2)	弾性係数 (N/mm2)	材令
上フランジ	解放時	52.7	26500	7
	実験時	60.3	28100	14
下フランジ	解放時	64.3	32000	23
	実験時	67.4	32000	30

表-3 鋼材特性(曲げ載荷試験供試体)

項目	種類	降伏強度 (N/mm2)	引張強度 (N/mm2)	弾性係数 (N/mm2)
鉄筋	D10 SD295	526.0	374.5	188000
	D13 SD295	355.0	480.0	200000
PC鋼材	ϕ 15.2 SWPR7BL	1764	1943	192000
	ϕ 17 SBPR 930/1080	1070	1145	200000
	$7 \times \phi$ 9.5 SWPR7BL	1810	2053	190000
波形鋼板	SS400 t=4.5mm	285.0	444.0	200000
補強材	溝形鋼 200×80 t=7.5,11	336.0	461.0	200000

ンジに曲げひび割れが発生した。その後 79.1kN で曲げ区間にひび割れが多数発生し,荷重-変 位関係では剛性の低下が観察された。軸方向鉄 筋の降伏は荷重 149.3kN で生じ,この時点まで に支間中央約 6000mmの区間には 100mm 程度の 等間隔でひび割れが発生していた。その後,破 壊を迎えるまでに新たなひび割れはほとんど発 生せず,ひび割れ幅の増加に伴って変位が増大 していた。最大荷重を記録した 228.3kN 時点で ジャッキストローク容量の関係から一旦除荷し, 盛換え後再載荷を行った。変位 516.2mm におい て上縁コンクリートの圧壊が生じ始め,525.4mm で上縁圧壊により終局に至った。圧壊した部位 では軸方向鉄筋および補強材(溝形鋼)の座屈 が確認された(写真 - 3)。

図 - 9には各設計耐力も併せて示している。 設計値は,道路橋示方書・同解説(III コンクリ ート橋編)²⁾に従い,施工段階を考慮して算出し た。材料特性は表 - 2および表 - 3による。た だし,波形鋼板断面,接合棒鋼(D13)は無視し ている。また,ひび割れ発生荷重の計算におけ るコンクリートの縁引張応力度には,コンクリ ート標準示方書[構造性能照査編]³⁾の曲げひび 割れ強度算定式より求めた縁引張応力度も考慮 している。ひび割れ発生荷重に関しては,曲げ ひび割れ強度を考慮したことにより,設計値と 実験値で良く一致する結果となった。鉄筋降伏 耐力および終局耐力では,設計値は実験値の 82%,89%であり,十分安全側の設計となること が示された。

4. まとめ

本論では,低桁高波形鋼板ウェブ PCT 桁橋の 実用化に向け,実証試験を行ったものである。 本試験の結果を以下にまとめる。

- (1)引張プレストレス導入試験の結果,波形鋼 板上縁に溶接した補強材を利用する方法 により,設計通りの引張プレストレスを導 入できることが確認された。
- (2)したがって、本構造は、低桁高橋梁の設計 で桁高を決定する要因となる桁上縁圧縮 応力を低減し、より低い桁高を実現できる と考える。
- (3)施工時のひずみ計測から,主桁にはほぼ設 計通りの応力が導入されることが確認さ れた。
- (4)実桁の 1/2 の試験桁を用いた曲げ載荷試験 の結果,桁は十分な耐荷性能を有している ことが確認された。また,設計は十分安全 側となることが示された。

図 - 9 荷重 - 変位関係

写真-2 破壊状況(全景)

写真-3 破壊状況(支間中央)

参考文献

- 1) 加藤卓也,大浦隆,: PCI 桁のウェブに波形 鋼板を用いた低桁高橋の試設計,土木学会第 58 回年次学術講演会講演概要集,V-301, pp.601-602,2003.9
- 2) 道路橋示方書・同解説(III コンクリート橋 編),日本道路協会,2002.3
- 3) コンクリート標準示方書[構造性能照査編], 土木学会,2002.3