## 論文 ASR 構造物中における鉄筋の初期欠陥が破断に及ぼす影響

眞野 裕子<sup>\*1</sup>・幸左 賢二<sup>\*2</sup>・合田 寛基<sup>\*3</sup>・荒木 茂<sup>\*4</sup>

要旨:本研究は ASR による鉄筋の曲げ加工部における損傷に焦点を当て,その原因及びメカ ニズムの解明を目的としている。曲げ加工した際に曲げ加工部内側に初期亀裂が発生した鉄筋 を,膨張コンクリートにより ASR 膨張を模擬した供試体内に配置し,初期亀裂と膨張の関係 性について実験的検討を行った。その結果,矩形構造物全体が円形となろうとするため,鉄筋 曲げ加工部において大きな応力が作用すること,膨張圧により鉄筋の初期亀裂が進展すること が明らかとなった。

キーワード:ASR,曲げ加工,鉄筋の初期亀裂,膨張圧

#### 1. はじめに

近年アルカリ骨材反応(以下ASRと表記)等に よるコンクリート構造物の早期劣化が問題とな っている。ASRに起因する膨張圧の発生により, コンクリートにはひび割れが発生し,鉄筋にお いては曲げ加工部や圧接部での亀裂・破断が確 認されるなど,構造機能の低下が懸念されてい る。特に鉄筋損傷が生じることにより,耐荷性・ 耐震性が低下し,構造物が十分に機能しない可 能性があるため,維持管理の面からも鉄筋損傷 のメカニズムを解明することが重要な課題とな っている。

鉄筋損傷に関しては、コンクリートの膨張だ けでなく、鉄筋にも原因があると考えられる。 そこで、曲げ加工した鉄筋に対して引張試験や 縦断面観察等の材料試験を行った結果、写真 -1に示すように、曲げ加工半径が小さい場合、 曲げ加工時に曲げ加工部内側に初期亀裂が発生 していること、その場合破断強度が低下するこ とを明らかにした<sup>1)</sup>。本稿では、ASRによる鉄筋 の曲げ加工部での破断に関して、曲げ加工時に 初期亀裂が発生した鉄筋を、膨張コンクリート によりASR膨張を模擬した供試体内に配置し、 初期亀裂と膨張に関して実験的検討を行った。 2. 実験概要

2.1 供試体形状

検討対象として,建設後20年程度経過してお り,ASR による損傷及び曲げ加工部での鉄筋破 断が確認された橋脚を選定した。供試体断面は 鉄筋が損傷した場合,構造物の耐力低下が最も 懸念される A-A 断面の 1/8 スケールとし, 引張 主鉄筋比が実橋と等しくなるように D19 を 4 本 配置し,帯鉄筋曲げ加工部に作用する膨張を同 じにするため,断面は正方形とし,各辺同様の 配筋とした。図 - 2 に供試体形状を示す。供試 体数が多く、長期的な測定のため、測定を簡易 にさせる目的から,小型の供試体を作成し,長 さは 670mm とした。膨張コンクリートのみで実 験を行った場合,自己崩壊を起こす可能性があ ることから、中央部を空洞にした普通コンクリ ートを打設し,その後普通コンクリートの中央 部分に膨張コンクリートを打設した。



\*1 九州工業大学大学院 工学研究科 建設社会工学専攻 (正会員) \*2 九州工業大学 工学部 建設社会工学科教授 Ph.D. (正会員) \*3 九州工業大学大学院 工学研究科 機能システム創成工学専攻 (正会員) \*4 九州工業大学大学院 工学研究科 建設社会工学専攻 (正会員) 2.2 検討ケース

パラメーターとしてはかぶりの有無,帯鉄筋 比,帯鉄筋の曲げ加工半径,膨張量に着目した。

鉄筋の損傷状況を目視により確認するため, 図-2(b)に示すように,帯鉄筋を外側に配置し たかぶり無しの供試体(case2)を作成した。帯鉄筋 比は実橋と同等の0.147%を標準として,その2 倍の0.290%の検討も行った。曲げ加工半径は初 期亀裂が多く確認された1.00dと,初期欠陥の程 度が軽微なものとして1.25dを選定した。膨張量 については膨張コンクリートの配合を変化させ, 膨張量が小さいものと大きいものの2パターン 行った。

2.3 使用材料

(1) 膨張コンクリート

ASR による反応過程は「化学反応によりゲル が生成する化学的過程」と「ゲルが吸水するこ とにより膨張する物理的過程」の2つに分類さ れる。実際に反応性骨材を用いた場合, ASR に よるひび割れが顕在化するには早くても数年か かるため,本実験では,物理的過程のみに着目 し,石灰系膨張材を用いて ASR の膨張を模擬し た。

## (2) 鉄筋

帯鉄筋に使用した D10 鉄筋には 90°の曲げ加 工を施し,曲げ加工半径は曲げ加工した際に初 期亀裂が確認された 1.00d と 1.25d とした。さら に経年劣化を考慮するため,全ての鉄筋に対し, 電気炉を用いて 150 ,60 分の加熱処理を行う ことにより,ひずみ時効の促進を行っている。 2.4 実験方法

曲げ加工した際に曲げ加工部内側に発生する 初期亀裂に関して,対象物を100倍まで拡大し て観察できるマイクロスコープを用いて画像計 測を行った。外側の普通コンクリートは3週間 養生した後,膨張コンクリートを打設した。

# 2.5 測定項目

本実験では帯鉄筋の応力状態を調べるために ひずみを測定し,膨張による変形を調べるため にデジタルカメラで撮影を行った。図-3にひ



ずみ測定位置とデジタルカメラの撮影面を示す。 ひずみの測定は,鉄筋の変形を考慮するため, 図-4に示すように内側と外側にゲージを貼り 付けた。なお,曲げ加工部のうち1箇所に関し ては,実験終了後,はつり出して亀裂の進展を 測定するためにゲージを貼付していない。400万 画素のデジタルカメラを供試体から30cm離れ た設置台に固定し,図-5に示すように供試体 断面に標点を貼り付けて,標点間距離を測定す ることにより変位量を評価した。

また,曲げ加工部の亀裂程度を評価するため, マイクロスコープを用いて亀裂を観察した。

#### 3. 実験結果

3.1 コンクリートの挙動

(1) ひび割れ発生状況

図 - 6 ~ 9にひび割れ損傷図を示す。ここで, 実験終了後にはつり出しによる初期亀裂の進展 を確認した case3 を代表例として,膨張コンクリ ート打設後 2,3,5,11 日目のひび割れ損傷図 を載せている。その他のケースについては 11 日 目の損傷図を載せている。特に図 - 6(a)には側面 1,2,上面を示し,側面 1 に端部,中央部の定 義を示している。

図 - 6からひび割れの発生傾向は,2日目程度 から供試体の側面の中央部に主鉄筋方向にひび 割れが発生し,3日目前後に供試体の端部にひび 割れが発生した。その後 5 日目前後までは新し いひび割れが発生していく傾向にあったが,そ れ以降は既存のひび割れが進展あるいはひび割 れ幅が拡大する傾向が見られた。case3 と同様に 膨張量の大きい case4 においても同傾向のひび 割れ損傷が生じた。一方 膨張量が小さい case1, 2 については,中央部にひび割れが入る程度に損 傷が留まっている。膨張がさらに進めば case3, 4 と同様の損傷状況となると考えられる。

図 - 11 に最もひび割れ損傷の激しかった case3 の側面 1 のひび割れ幅の増加傾向を示す。 ひび割れ幅は図 - 10 に示す 1mm を超えたもの を対象としている。ここで,中央部と端部でひ び割れの発生傾向が異なったことから,端部に 発生したひび割れを黒で表記し,中央部に発生 したひび割れを白抜きでプロットしてひび割れ 幅の増加傾向を比較した。日数が経つにつれ, 中央部で発生したひび割れ幅に比べ,端部に発 生したひび割れ幅の伸びが大きいことが分かる。 後述するが,膨張が進むと,鉄筋においては曲 げ加工部のひずみが進展し,コンクリートに関 しては端部のひび割れが進展すると考えられる。

以上よりひび割れ損傷は,初めに中央部に発 生し,その後端部に発生する。その後新たなひ び割れ発生が落ち着き,端部を中心としてひび 割れ幅やひび割れ長さが進展すると考えられる。



(2) 変形

膨張量の大きかった case3,4 に関して,デジ タルカメラの画像によって,コンクリートの膨 張に伴う変形量に関して検討を行った。

図 - 12,13 に各ケースの変形の模式図と各標 点の移動状況を示す。標点の移動状況は中心の 標点を基準点として,その他の標点について移 動後の座標で示している。case3 については断面 (-151, -153) の 1/4 を詳しく示している。

両ケースとも隅角部に貼り付けた標点の X 方 向,Y 方向の変位が軸上に貼り付けた標点の変 位に比べ小さく,直線部がはらみだす方向の変 形量が大きいことが分かる。つまり,供試体が 全体的に大きくなるというより,丸みを帯びる ように変形していることが分かる。帯鉄筋比に 着目すると,case4の方が case3 より変形量が大 きいことから,帯鉄筋比の高い方が鉄筋の拘束 により変形が抑えられると考えられる。

3.2 鉄筋の挙動

図 - 14,15 に鉄筋の直線部及び曲げ加工部で のひずみの経過図を示す。データは各ケースの 鉄筋ひずみを平均化したものを用いた。

図 - 14,15 によると case3 A に対して case1, 2 では膨張量が小さいため,ひずみの伸びは小さいが,全ケースで直線部に比べ,曲げ加工部において大きなひずみが発生しており,曲げ加工 部に変形が集中していることが分かる。

鉄筋の内側と外側を比較すると,直線部では 外側の方が引張ひずみが大きく,曲げ加工部で は内側の方で引張,外側で圧縮のひずみが発生 している。図-12,13に示す変形状態とあわせ て考えると,コンクリートの膨張により,帯鉄 筋の直線部は外側に押し出されるため,外側の 引張ひずみが内側より大きくなり,曲げ加工部 では広げられるような挙動であるため,内側に 引張ひずみが集中したと考えられる(図-16)。特 に直線部のひずみからは,膨張量が大きいもの の方が内側と外側のひずみの差が顕著であるこ とから,膨張量が大きいほど,丸みを帯びた変 形となる傾向が高いと考えられる。帯鉄筋比に



着目すると, case4 は case3 より大きなひずみが 発生していることから,鉄筋にかかる応力が大 きいと考えられる。よって,帯鉄筋比が小さい 方が1本あたりの鉄筋が負担する膨張圧が大き いため,大きな応力が発生すると考えられる。

### 4. 実橋との比較

図 - 17 に対象橋梁のひび割れ損傷図を示す。 0.2mm 以上のひび割れに着目し,1mm を超える ひび割れに関しては1以上として表記した。ひ び割れは梁側面の中央部及び上面の端部に主鉄 筋に沿う方向に発生し,その後既存のひび割れ が進展するとともに,梁側面及び上面に全体的 に新たなひび割れが発生している。特に破断が 確認された箇所では,幅1mm 以上の長いひび割 れが発生している。鉄筋損傷としては破断,曲 げ加工部内側において亀裂が確認されている。

ここで,対象断面である A-A 断面の梁側面 2 面及び上面を横切るひび割れの総ひび割れ幅と 供試体の総ひび割れ幅,ひび割れ本数を表 - 2 に示す。供試体の総ひび割れ幅及びひび割れ本 数は,帯鉄筋比が同等の case4 の側面 2 面及び上 面における全測定線の総ひび割れ幅,測定線を またぐひび割れ本数の平均値を用いた。また, 総ひび割れ幅及びひび割れ本数を対象長さで除 することにより,断面での損傷度を検討した。

表 - 2より,供試体の4日目と実橋のA-A断 面での見かけの膨張量及び単位長さあたりのひ び割れ本数が,若干の値の差はあるが,比較的 近い値を示している。供試体においては,その 後,膨張量の増加に伴って,端部のひび割れ幅 が拡大していき,鉄筋に発生する引張応力が卓 越することから,実橋のA-A断面も膨張が進む につれて端部(スターラップ曲げ加工部付近)に ひび割れが多く発生し,鉄筋曲げ加工部におい て引張応力が集中すると考えられる。

## 5. 初期亀裂の進展

曲げ加工半径 1.00d で初期損傷が大きく,膨張 量も大きい case3 に関してはつり取り調査を行



|                            | A-A断囬 | 4日日  |      |  |
|----------------------------|-------|------|------|--|
| 総ひび割れ幅(mm)                 | 9.8   | 1.0  | 3.4  |  |
| ひび割れ本数(本)                  | 22    | 3.9  | 7.1  |  |
| 対象長さ(mm)                   | 8370  | 1020 |      |  |
| 見かけの膨張量(×10 <sup>6</sup> ) | 1171  | 964  | 3364 |  |
| 単位長さあたりのひび<br>割れ本数(本/m)    | 2.63  | 3.78 | 7.00 |  |

見かけの膨張量 = 総ひび割れ幅/対象長さ 単位長さあたりのひび割れ本数 = ひび割れ本数/対象長さ



## 図 - 18 亀裂測定位置 表 - 3 鉄筋初期亀裂の変化量

|      |     | 鉄筋1   | 鉄筋2   | 鉄筋3   | 鉄筋4   | 鉄筋5   |
|------|-----|-------|-------|-------|-------|-------|
| 亀裂幅  | 試験前 | 0.089 | 0.071 | 0.076 | 0.093 | 0.082 |
|      | 試験後 | 0.091 | 0.113 | 0.109 | 0.148 | 0.122 |
|      | 伸び量 | 0.002 | 0.042 | 0.033 | 0.055 | 0.040 |
| 亀裂長さ | 試験前 | 3.660 | 7.492 | 4.012 | 7.500 | 6.520 |
|      | 試験後 | 5.950 | 8.095 | 4.737 | 7.523 | 6.588 |
|      | 伸び量 | 2.290 | 0.603 | 0.725 | 0.023 | 0.068 |

(単位:mm)

い, 亀裂の進展状況を確認した。case3 における 曲げ加工部内側の引張ひずみは, 平均で 15000 µを越えていたことから, case3 の帯鉄筋には, 膨張圧により曲げ加工部に高い引張応力が作用 したと考えられる。

亀裂の測定箇所は,図-18に示すように曲げ 加工によって亀裂が発生すると考えられる<sup>1)</sup>曲 げ加工部内側での節付け根を対象としている。

測定はマイクロスコープを用いて行い,打設 前とはつりだした後の亀裂状況を比較している。 マイクロスコープの画像は3.0×4.5mmの範囲を 45 万画素で撮影し,画像診断ソフトを用いて処 理し,測定している。

図 - 19,20 に亀裂の撮影状況,表-3,図-21,22 に測定結果を示す。表-3,図-21,22 で表記している値は,各帯鉄筋で確認された亀 裂の中で最も大きい亀裂である。図-21 による と,亀裂幅はすべて亀裂について進展が確認で き,最大では1.58 倍となる亀裂もあった。亀裂 長さについては,ほとんど変わらない亀裂もあ るが,約2mm 程度大きくなる亀裂も見られた。 以上より亀裂長さ,亀裂幅共に進展にばらつき が見られるものの,膨張圧によって初期亀裂が 進展していくことを確認した。

しかし膨張量が過大であったにも関わらず, 破断に至らなかった。これは検討に用いた鉄筋 が現行規格の鉄筋であり,節形状など亀裂の発 生に大きく影響を与える条件が損傷を受けた約 20年前の鉄筋より安全側であること,膨張圧が かかる時間が短期であったため,経年劣化の影 響が少なかったことが原因であると考えられる。

### 6. まとめ

以上より得られた結果を以下にまとめる。

- コンクリートが膨張すると,鉄筋曲げ加工部 において大きな応力が発生し,付近のひび 割れも進展する傾向にあるため,構造物全 体が円形になる挙動を示す。
- (2) 膨張圧により,曲げ加工によって発生する鉄 筋初期亀裂が進展することがわかった。



(3) 今回の実験では膨張量が過大であったにも 関わらず,鉄筋破断は起こらなかった。し かし,亀裂の進展は見られたことから,鉄 筋の初期損傷の程度によっては破断に至る 可能性があると考えられる。

参考文献

 1) 眞野裕子,幸左賢二,松本茂,橋場盛:曲げ 加工部での鉄筋損傷メカニズムの検討,コン クリート工学年次論文集,Vol.26,No.1, pp.963-968,2004.7