論文 凍結防止剤によるコンクリート版の塩分浸透に関する解析的評価

三村 陽一^{*1}·吉武 勇^{*2}·辻 和秀^{*3}·浜田 純夫^{*4}

要旨:冬期に限定して散布される凍結防止剤による塩分の浸透は、コンクリート表面塩化 物イオン濃度の季節変動に影響を受ける.本研究は、凍結防止剤によるコンクリート中の 塩分濃度分布を求めるため、季節変動を考慮した塩分浸透について解析的評価を行った. その結果、凍結防止剤の散布に応じ、表面付近の塩化物イオン濃度は変動しながら漸増し た。また、表面塩化物イオン濃度の季節変動に影響を受けない深さが、表面から40mm 程 度の位置にあり、その深さより深い位置における塩化物イオン濃度は、年平均の表面塩化 物イオン濃度に依存する可能性を示した。

キーワード:凍結防止剤,塩害,浸透解析,塩化物イオン濃度

1. はじめに

凍結防止剤に含まれる塩分は,海洋からの飛 来塩分と同様に、構造物表面からコンクリート の内部へ浸透することにより、塩害などのコン クリートの劣化をもたらす。特に, 1993年3月 のスパイクタイヤの使用が規制されて以降、凍 結防止剤の散布量は増加傾向にあり、凍結防止 剤散布による塩害劣化現象が顕在化してきて いる。しかしながら,その報告事例等は海洋か らの飛来塩分によるものに比して極めて少な い。また、凍結防止剤による塩害劣化の進行度 (コンクリート内部の塩化物イオン濃度)は、凍 結防止剤の散布量や散布頻度,構造形状,交通 量など環境・使用条件により大きく異なる。そ のため、基準等¹⁾において、凍結防止剤散布環 境下にある構造物では,塩化物イオンの浸透に 対する検討・対策の必要性が示されているが. 構造物表面における塩化物イオン濃度の標準 的な値、あるいは耐久性を確保するための鉄筋 かぶりなど,具体的な基準化はほとんどなされ ていない。

ここで,海洋付近における構造物の場合,年

間を通じて海洋からの飛来塩分が,構造物表面 より供給される。したがって,一般にコンクリ ート内部への塩分浸透を推定する際,境界条件 である構造物表面における塩化物イオン濃度 は,年間を通じて一定の値として与えられる。 しかしながら,冬期に限定して散布される凍結 防止剤による塩分の浸透は,コンクリート表面 における塩分の季節変動の影響を受けること が予測される。

そこで本研究では、凍結防止剤に起因した塩 害劣化予測に対する一資料を提供する位置づ けのもと、コンクリート舗装版および鉄筋コン クリート床版(以下、これらを総称してコンク リート版と称す)に着目し、凍結防止剤による コンクリート中の塩分濃度分布を求めるため、 季節変動を考慮した塩分浸透について解析的 評価を行ったものである。

2. 解析方法

2.1. 塩化物イオン濃度の算定方法

コンクリート中における塩化物イオンの浸 透解析は,一般に Fick の拡散方程式(式(1))に

*1 山口大学大学院 理工学研究科博士後期課程 修(工) (正会員)
*2 山口大学 工学部社会建設工学科助教授 博(工) (正会員)
*3 株式会社エイトコンサルタント 第二事業部部長 (正会員)
*4 山口大学 工学部社会建設工学科教授 Ph.D. (正会員)

おいて境界条件(表面塩化物イオン濃度 C_0)を 一定として導かれる式(2)が用いられる。

$$\frac{\partial C}{\partial t} = D_d \frac{\partial^2 C}{\partial x^2} \tag{1}$$

$$C = C_0 \left\{ 1 - erf\left(\frac{0.1 \cdot c}{2\sqrt{D_d \cdot t}}\right) \right\} + C_{ini} \qquad (2)$$

ここに、C:塩化物イオン濃度(kg/m³)、 D_d : 塩化物イオンに対する拡散係数(cm²/年)、t:経 過年数(年)、x:表面からの深さ(mm)、 C_0 :表 面塩化物イオン濃度(kg/m³)、c:鉄筋かぶり (mm)、*erf*():誤差関数、 C_{ini} :初期塩化物イ オン濃度(kg/m³)、を表す。

ここで、本研究において対象とする凍結防止 剤は図-1に示すように、冬期の3ヶ月(12月~ 2月)程度に集中して散布されるため、表面塩化 物イオン濃度 C_0 は季節に応じて変動する。し たがって、表面塩化物イオン濃度 C_0 を一定と して導かれた上記の式(1)は、凍結防止剤の散 布により表面塩化物イオン濃度 C_0 が季節変動 するコンクリート版には必ずしも準用できな いものと考えられる。

ここで式(1)は、コンクリート中の塩化物イ オンの移動を一次拡散現象とみなして構築さ れている。つまり、塩化物イオン濃度 C の深さ 方向に対する分布勾配の変化率(∂²C/∂x²)と塩 化物イオン濃度 C の浸透速度(∂C/∂t)とが比例 関係にあることを示している。そこで本研究で は、表面塩化物イオン濃度が季節変動する環境

図−1 表面塩化物イオン濃度 G 変化の模式図

図-2 塩化物イオン濃度の算定フロー

図-3 塩化物イオン濃度算定過程の概念図

下において、コンクリート内部の塩化物イオン 濃度の推移をできるだけ簡易に表現するため、 以下に示す手法にて塩化物イオン濃度の算定 を行った。

本研究における塩化物イオン濃度算定の算 定フローならびに概念図をそれぞれ図-2およ び図-3に示す。なお、図-3は算定過程の一例 として表面からの深さ x2 における塩化物イオ ン濃度の算定過程を示すものである。図-3に 示すように, step1 において表面からの深さ x2 およびその両隣の2点x1,x3における塩化物イ オン濃度(C_{i,1}~C_{i,3})の分布曲線を 2 次曲線 $(C=a_2x^2+b_2x+c_2)$ と仮定した。そして step2 にお いて、この2次曲線から得られる塩化物イオン 濃度の分布勾配の変化率($\partial^2 C/\partial x^2 = 2a_2$)を求め, step3 において、表面からの深さ x_2 における Δt 間の塩化物イオン濃度の増分 AC2 を算定した。 このように、着目点およびその両隣の2点を2 次曲線と仮定し,着目点における分布勾配など を算定する手法は,比較的簡易な手法であり, 本研究のような離散値による数値計算の一般 的な手法として, 例えば, 付着応力算定におけ るひずみ分布の仮定^{2),3)}などに利用されている。

以上のように,経過時間 t_i における塩化物イ オン濃度 $C_{n,i}$ に対し, Δt 間の塩化物イオン濃度 の増分 ΔC を加算し, Δt 後における塩化物イオ ン濃度 $C_{n,j}$ の算定を行った。以下,本論文では 上記の手法を「step 法」と称す。

また、比較用としてコンクリート標準示方書 に示される式(2)を用い、表面塩化物イオン濃 度 C_0 を一定とした場合の塩化物イオン濃度も 算定した。以下、本論文では式(2)を「示方書 法」と称す。

2.2. コンクリートの物性値および解析条件

本研究の浸透解析で用いたコンクリートの 物性値ならびに解析条件を表-1に示す。

本研究では、コンクリート舗装版および床版 などの一般的なコンクリート版を対象として いることから、水セメント比 W/C は 55%とした。 また、塩化物イオンに対する拡散係数 D_d は、

表-1 コンクリートの物性値および解析条件

コンクリートの物性値				
W/C		D_d		
55%		1.91cm ² /年		
		(15.9×10 ⁻⁶ mm ² /月)		
解析条件				
	C_0	C_{ini}	Δx	Δt
step 法	13, 26, 39	0.3kg/m ³	10mm	1ヶ月
	kg/m ³			
示方書法	3.3, 6.5, 9.8			
	kg/m ³			

コンクリート標準示方書⁴⁾に示されている式 (3)を用い,水セメント比 *W/C*より算出した。

$$\log D_d = -3.9(W/C)^2 + 7.2(W/C) - 2.5 \quad (3)$$

解析条件のうち, コンクリート表面における 塩化物イオン濃度 Coは、コンクリート内部へ の塩化物イオンの浸透に対し重要なパラメー タのひとつである。海洋環境における表面塩化 物イオン濃度 C₀ はコンクリート標準示方書 4) において,海岸からの距離に応じた表面塩化物 イオン濃度 C₀ が示されている。一方, 凍結防 止剤散布による表面塩化物イオン濃度 C₀は, 極めて局所的な条件の影響が多いとともに、実 構造物における調査データ数が飛来塩分に対 し著しく少ないため,いずれの基準・指針にも 標準となる値が示されていない。そこで、先述 の step 法ではコンクリート標準示方書に示され る海洋環境での表面塩化物イオン濃度 C₀のう ち、最も厳しい条件である飛沫帯での表面塩化 物イオン濃度 13kg/m³, およびその 2 倍, 3 倍に 相当する 26, 39kg/m³を用い浸透解析を行った。 また、凍結防止剤の散布による表面塩化物イオ ン濃度 Coの変動を模擬するため, 図-1 に示す ように1年間のうち3ヶ月間のみ表面塩化物イ オン濃度 Coを与えるものとし,残りの9ヶ月 における表面塩化物イオン濃度 C₀は 0(ゼロ) とした。比較用として行った示方書法での表面 塩化物イオン濃度 C₀は、上記の表面塩化物イ

図−4 示方書法による塩化物イオン濃度の経年変化算定結果(50年間)

図-5 step 法による塩化物イオン濃度の経年変化算定結果(50年間)

オン濃度を年平均の表面塩化物イオン濃度に 換算した,3.3,6.5,9.8kg/m³を用いて浸透解析 を行った。また,step法および示方書法のいず れにおいても,建設時よりコンクリート内部に 含まれる初期塩化物イオン濃度 C_{ini}は,生コン クリートの品質基準の最大値である0.3kg/m³と した。なお,本研究における浸透解析では,塩 化物イオン濃度の推移をできるだけ簡易に表 現すべく,*Ax*および*At*を,それぞれ10mmお よび1ヶ月として行った。

3. 解析結果および考察

3.1. 塩化物イオン濃度の経時変化

塩化物イオン濃度の解析結果の一例として, 示方書法による表面塩化物イオン濃度 C₀ =9.8kg/m³および step 法による同 C₀=39kg/m³の 塩化物イオン濃度の経年変化(50 年間)を,各々 図-4,図-5に示す。なお,示方書法による表

図-6 塩化物イオン濃度の経時変化の例 (15ヶ月間)

面塩化物イオン濃度 $C_0 = 9.8 \text{kg/m}^3 (12 \text{ <math>rf})$ は, step 法による同 $C_0 = 39 \text{kg/m}^3 (3 \text{ <math>rf})$ の,年平均 値に相当する。

図-4に示すように、示方書法では境界条件 が解析期間内において表面塩化物イオン濃度 *C*₀が一定であることから、コンクリート内部の 塩化物イオン濃度の経年変化(50年間)は、時間 の経過とともに単調に増加するものであった。 また、コンクリート表面付近においては、コン クリートの表面塩化物イオン濃度 C₀に漸近す る結果となった。一方、step 法で算定した塩化 物イオン濃度の経年変化は、コンクリート表面 付近において凍結防止剤の散布に応じ、変動し ながら漸増する傾向にあった。なお、表面から 10, 20, 30mm の位置における変動の振幅はそれ ぞれ 12.7, 3.1, 0.8kg/m³程度であり、10mm 深く なるごとに 1/4 程度に小さくなるものであった。 また、表面付近での変動を繰り返す現象は、表 面より 40mm においてその振幅が 0.2kg/m³程度 と極めて小さくなり、表面より 50mm において ほとんどみられなくなった。

ここで、step 法による表面塩化物イオン濃度 $C_0 = 39 \text{kg/m}^3$ の結果について、経過時間 10 年 (120 ヶ月)後から 15 ヶ月間の経時変化を**図-6** に示す。**図-6**に示すように、表面から 10mm では凍結防止剤散布終了時においてピークの 値を示しているのに対し、表面からの距離が深 くなるにつれて、ピークの値となるのが散布終 了後 2 ヶ月、5 ヶ月、9 ヶ月と徐々に遅くなる 傾向がみられた。以上のような塩化物イオン濃度 $C_0 = 26 \text{kg/m}^3$ および $C_0 = 13 \text{kg/m}^3$ においても同様 であった。

3.2. コンクリート内部における塩化物イオン 濃度の分布

コンクリート内部における塩化物イオン濃 度分布の算定例として、示方書法による表面塩 化物イオン濃度 $C_0 = 9.8$ kg/m³の塩化物イオン濃 度の内部分布を図-7に示すとともに、step 法に よる表面塩化物イオン濃度 $C_0 = 39$ kg/m³の塩化 物イオン濃度の内部分布を図-8に示す。図-7 より、示方書法ではコンクリートの表面塩化物 イオン濃度 C_0 を一定としているため、いずれ の経過年数においても、コンクリートの表面塩 化物イオン濃度 C_0 が最大値となるものであっ た。また、コンクリート内部に進行するにつれ

図-7 塩化物イオン濃度の内部分布(示方書法)

図-9 塩化物イオン濃度比(C_{step}/C_{spec})の例 (経過年数:10,50年)

て塩化物イオン濃度は単調減少する傾向にあった。図-8に示す step 法による塩化物イオン

濃度分布の算定結果では、凍結防止剤散布時期 にはコンクリート表面付近(0mm~20mm)にお いて極めて高い値を示した。また、凍結防止剤 散布9ヵ月後においては塩化物イオン濃度のピ ークが表面より 20mm~30mm 付近に移動して おり、時間の経過とともにそのピーク位置は表 面から深い方向へとシフトするものであった。

ここで,示方書法により算定した塩化物イオ ン濃度 C_{spec} に対する step 法により算定した塩 化物イオン濃度 C_{step} の比($C_{\text{step}}/C_{\text{spec}}$)と、コン クリート表面からの距離の関係の一例として, 経過年数10年および50年における塩化物イオ ン濃度比(C_{step}/C_{spec})を図-9に示す。図-9よ り, step 法においてコンクリート表面塩化物イ オン濃度 C₀の季節変動の影響が大きいコンク リート表面から 0~40mm では、凍結防止剤散 布後の時間の経過に伴い, 塩化物イオン濃度比 $C_{\text{step}}/C_{\text{spec}}$ が大きく変動していることがわかる。 一方, コンクリートの表面塩化物イオン濃度 C₀の季節変動の影響が小さくなる表面から 40mm より深い位置においては、いずれの経過 時間においても塩化物イオン濃度比 $C_{\text{step}}/C_{\text{spec}}$ がほぼ±5%の範囲内にあることがわかる。この ことから, step 法による塩化物イオン浸透の妥 当な推定が可能であると考えられる。また、コ ンクリートの表面塩化物イオン濃度 C₀の季節 変動に影響を受けない深さが、表面から 40mm 程度の位置にあると推察され、これより深い位 置における塩化物イオン濃度は, 年平均の表面 塩化物イオン濃度 Co に依存する可能性を示す ものである。したがって、凍結防止剤のように 表面塩化物イオン濃度 Co が季節変動する場合 においても、表面塩化物イオン濃度 C₀を一定 にして塩化物イオン濃度の推定ができると考 えられる。

4. まとめ

本研究では,凍結防止剤散布によるコンクリ ート版の塩害劣化予測において,特に,季節変 動を考慮した塩化物イオンの浸透解析を行っ たものである。本研究の範囲内で得られた結論 を以下に要約する。

- (1) 凍結防止剤の散布に応じ、コンクリートの 表面付近における塩化物イオン濃度は変動 しながら漸増するものであった。
- (2) コンクリート表面における塩化物イオン濃度の季節変動を考慮した場合、コンクリート内部の塩化物イオン濃度分布のピーク値が表面から20mm~30mm付近にあった。
- (3) 表面塩化物イオン濃度の季節変動に影響を 受けない深さが、表面から40mm程度の位 置にあり、その深さより深い位置における 塩化物イオン濃度は、年平均の表面塩化物 イオン濃度 C₀に依存する可能性を示した。

参考文献

- (社)日本道路協会:道路橋示方書・同解説 各編,2002.3.
- 2) 島 弘,周 礼良,岡村 甫:マッシブな コンクリートに埋め込まれた異形鉄筋の付 着応カーすべり-ひずみ関係,土木学会論 文集,No.378/V-6, pp.165~174, 1987.2.
- 三村陽一,吉武 勇,辻 和秀,田中 浩, 浜田純夫:両引き試験における若材齢コン クリートと異形鉄筋の付着特性の評価,土 木学会論文集,No.732/V-59,pp.211~233, 2003.5.
- 4) (社)土木学会:2002 年制定 コンクリート標準示方書【構造性能照査編】,2002.3.