論文 短繊維を混入した水中不分離性コンクリートの基礎性状

松原 功明*1·大野 俊夫*2·坂井 吾郎*3·福山 貴子*4

要旨:繊維補強した水中不分離性コンクリートの実用性を検討することを目的とし,有機繊 維および鋼繊維を混入した水中不分離性コンクリートの基礎性状を把握した。気中試験にお いてフレッシュ性状試験を実施し,繊維の混入がスランプフローおよび空気量におよぼす影 響を把握した。また,硬化性状試験において,硬化後の圧縮性状および曲げ性状を把握した。 さらに,代表的な配合について水中試験を実施し,気中,常圧水中,高圧水中下でのスラン プフローを比較した。

キーワード:水中不分離性コンクリート、繊維補強コンクリート、有機繊維、鋼繊維

1. はじめに

水中不分離性コンクリートは,水中不分離性 混和剤を使用することにより,水中打設しても 材料分離が少なく,セルフレベリング性を有す るコンクリートであり,本州四国連絡橋に代表 される大水深海峡基礎の建設^{1),2)}や護岸工事な ど,多数の施工実績を有している。さらに,近 年,これらの性能に加え,立坑底版などの水中 RC構造や大型海洋構造物,さらなる大水深構 造物など,適用先が多様化するに伴い,様々な 性能が要求されつつある。

一方,水中不分離性コンクリートは,これま でに多くの研究が実施されているものの^{3),4),5)}, 一般のコンクリートが,短繊維による補強や, 混和材の使用による高強度化などの研究開発が 実施されているのに比べ,それらの研究があま り実施されていないのが現状である。

そこで、今回、水中不分離性コンクリートの 適用範囲拡大の手段のひとつとして、有機繊維 および鋼繊維を混入した水中不分離性コンクリ ートの基礎性状を把握し、その実用性について 検討することとした。

水中不分離性コンクリートのフレッシュ性状

は、水中不分離性混和剤を使用することと、水 粉体容積比(Vw/Vp)を調整することでコンク リートの粘性を調整し、これに加え、適切な粗 骨材容積量(Gvol)とモルタル中の細骨材容積 比(s/m)を設定することで、流動性と材料分離 抵抗性を付与することができる。さらに、今回 のように、水中不分離性コンクリートに繊維を 混入した場合、前述の配合要因に加え、繊維の 種類や混入率が影響をおよぼすと考えられ、そ の程度を把握する必要がある。また、一般に、 水中不分離性コンクリートの硬化性状は、気中 作製した供試体と水中作製した供試体とで異な るため、供試体の作製方法が繊維による補強効 果におよぼす影響について検討することとした。

2. 実験内容

(1) 使用材料

使用材料を表-1に示す。コンクリートに繊 維を混入することによって流動性が低下するこ とが想定されたため、セメントには、より高い 流動性を付与できる低熱ポルトランドセメント を使用した。また、材料分離抵抗性および水和 熱に起因するひび割れの抑制を目的とし、石灰

- *1 鹿島技術研究所 土木構造グループ 研究員 工修 (正会員) *2 鹿島技術研究所 土木構造グループ 上席研究員 工博 (正会員) *3 鹿島技術研究所 土木構造グループ 主任研究員 (正会員)
- *4 鹿島技術研究所 土木構造グループ 研究員 工修

石微粉末を使用した。さらに、水中不分離性の 繊維については、市販されている有機繊維およ び鋼繊維を使用した。このうち、有機繊維につ いては、水中打設の際の水中への繊維の流出を 防止するため,水よりも密度の高い PVA 繊維(通 称:ビニロン繊維)を選択した。なお、両繊維 の繊維径については、市販されている製品の中 から同程度となる繊維径を選択し、繊維長につ いては, 土木学会が示す, 「鋼繊維補強コンクリ ート設計施工指針」を参考に、粗骨材最大寸法 の 1.5 倍の 30mm とした。使用した繊維を写真-1および写真-2に示す。

(2) 検討配合

検討配合,実験要因と水準の組合せを表-2に 示す。本実験では,水セメント比(W/C), Vw/Vp, s/m, Gvol, SP 添加率, 繊維種類, 繊維混入率を 実験要因とした。UWBは単位水量に対し1.15%, DA は単位粉体量(C+LP)に対し1.00%と添加率 を固定した。また,表中には実施した試験項目 を示すが、試験項目の詳細については後に示す。

(3) 練混ぜ方法

練混ぜには強制二軸ミキサを使用し、コンク

リートを練り上げた後に、繊維を投入した。な 付与のために,水中不分離性混和剤を使用した。お,繊維の投入時は,ファイバーボールの発生 を防ぐためにふるいを通し、コンクリートをミ

表 —	1 4	伂	田	お	彩	
1X		علا	л	11	TΤ	Î

種類	名称	記号	摘要
セメント	低熱 ポルトランドセメント	С	密度:3.22g/cm ³ 比表面積:3250cm ² /g
石灰石微粉末	_	LP	密度:2.70g/cm ³ 比表面積:3500cm ² /g
細骨材	佐原産山砂と 小笠山産山砂の 混合砂	S	表乾密度:2.64g/cm ³ 粗粒率:2.54 吸水率:1.88%
粗骨材	青梅産砕石	G	最大寸法:20mm 表乾密度:2.65g/cm ³ 粗粒率:6.70 吸水率:0.65%
水	上水道水	W	-
	高性能AE減水剤	SP	ポリカルボン酸系
混和剤	水中不分離性 混和剤	UWB	水溶性 セルロースエーテル系
	消泡剤	DA	ポリアルキレン グリコール誘導体
短繊維	PVA繊維 (通称:ビニロン繊維)	VF	密度:1.3g/cm ³ 繊維長:30mm 繊維径0.66mm
	鋼繊維	SF	密度:7.8g/cm ³ 繊維長:30mm 繊維径0.60mm

写真-1 有機繊維 写真-2 鋼繊維

						単位	上量(k	g/m^3)		SD	糸	蛓維	気中	試験	硬	化性状	試験	
No.	W/C	Vw∕Vp	s/m	Gvol	w	С	LP	S	G	。 添加率 (%)	種類	混入率 (Vol%)	繊維 混入前	繊維 混入後	<u>各引</u> 気中 作製	<u> 金度</u> 水中 作製	・ 曲げ たわみ	水中 試験
1	30.2	100			234	775								0	Ι	0	—	Ι
2	37.1	120	35	260	255	687	0	665	689	2.5	SF	1.50	-	0	-	0	-	
3	43.8	141			274	626							—	0	_	0	—	—
4				0	401	729	159	776	0				0	0	_	—	—	_
5			30	130	348	633	135	673	345	2.4	VF	1.25	0	0	_	—	—	—
6				260	295	536	116	570	689				0	0	_	—	—	_
7				130	323	587	127	787	345	2.4	VF	1.25	0	0	_	—	—	_
8											-	0.00	0	×	_	_	-	0
9			35	260	274	498						0.50	—	0	0	0	—	—
10											SF 1.00	1.00	—	0	0	0	0	—
11							105	665	689	2.4		1.50	—	0	0	0	-	0
12												0.50	—	0	0	0	-	_
13											VF	0.90	_	0	0	0	—	_
14	55.0	141										1.25	0	0	0	0	O O	0
15				0	344	625	135	1035	0	2.4	VF	1.05	0	0	_	—	-	_
16				130	298	542	119	898	345			1.25	0	0	_	—	-	_
1/	17 18 19 20 21 22 23 23	40	260 2	253	460	97	/60	689			0.00	0	0	_	_	_	_	
18			0 305 2							-	0.00	0	×	_	_	_	_	
19							710			0.5	1.00	_	0		_	_	_	
20				007	401					55	1.25	_	0	_	_	_	_	
21				237	431	92	/13	808	2.4		1.50	_	0	_	_	_	_	
22										VE	1.00		2	_	_		_	
23										VF	1.20		8	_			_	
24												1.50	_	0	_	_	_	_

表-2 検討配合および実験要因と水準

キサで攪拌しながら投 入した。

(4) 試験項目

試験項目を表-3に 示す。気中試験におい ては、スランプフロー および空気量を測定し た。なお,今回試験対

象とした水中不分離性コンクリートは, スランプフローが長時間広がりつづけ るため、スランプフロー試験については、 土木学会指針(案)³⁾を参考に,スラン プコーン引き上げ後 5 分において測定 することを基本とした。硬化性状試験で は、供試体作製時に、気中において一層 で打設する気中作製のほか,水中で打設 する,水中作製を実施した。水中作製で は、圧縮強度供試体については JSCE F-504 に準じ、曲げ強度供試体について は、図-1に示すように、型枠天端から 10 cmまで水を張り、水面を叩かないよ うに、コンクリートを型枠の片側から一 方向にあふれる程度流し込んだ。その後, 型枠を水中から取り出し,型枠側面を軽 く叩き水を排出し、10 分程度静置した

後、上面を均した。なお、気中採取および水中 採取共に材齢2日にて脱型し、その後は標準養 生とした。また、曲げ試験における載荷時は、 供試体作製時の側面が載荷面および支点となる 方向で実施した。水中試験ではスランプフロー 試験を実施したが、JISA 1150 に従い気中で測定 するケースのほか,常圧水中測定および高圧水 中測定を実施した。常圧水中測定では、図-2 に示すように, スランプコーンを水槽中に設置 し、その中にコンクリートを流し込んだ後、水 槽に水を充満させた。その後, スランプコーン を引き上げ、水中でのフロー値を測定した。高 圧水中測定では、写真-3および図-3に示す 装置を使用し、1.0Mpaの水圧下でのスランプフ ロー値を測定する高圧水中測定を実施した。な

試験項目 試験方法 備考 気中試験 スランプフロー JIS A 1150 スランプコーン引抜き後, 5分で測定 空気量 JIS A 1128 - 通佐測定 気中作製 近路 1108 材齢28日, 3本 通げ強度 JIS A 1108 材齢28日, 3本 通げ強度 JIS A 1108 材齢28日, 3本 通げ強度 (JSCE-G 552) 材齢28日, 3本 曲げ強度 (JSCE-G 552) 材齢28日, 3本 曲げ強度 (JSCE-G 552) 材齢28日, 3本 曲げたわみ測定 水中作製 (JSCE-G 552) 材齢28日, 3本	表一3 試験項目									
気中試験 スランプフロー JIS A 1150 スランプコーン引抜き後, 5分で測定 空気量 JIS A 1128 - 運気量 JIS A 1128 - 強度測定 気中作製 圧縮強度 JIS A 1108 材齢28日, 3本 強度測定 気中作製 圧縮強度 JIS A 1108 材齢28日, 3本 通げ強度 JIS A 1108 材齢7日, 28日, 各3本 曲げたわみ測定 水中作製 (JSCE-G 552) 材齢28日, 3本		試験項目		試験方法	備考					
空気量 JIS A 1128 - 通に性状試験 金度測定 気中作製 圧縮強度 JIS A 1108 材齢28日,3本 通げ強度 (JSCE-G 552) 材齢28日,3本 水中作製 正縮強度 JIS A 1108 材齢28日,3本 曲げ強度 (JSCE-G 552) 材齢7日,28日,各3本 曲げたわみ測定 水中作製 (JSCE-G 552) 材齢28日,3本	気中試験	スラン	ノプフロー		JIS A 1150	スランプコーン引抜き後, 5分で測定				
通佐測定 気中作製 圧縮強度 JIS A 1108 材齢28日,3本 通げ強度 (JSCE-G 552) 材齢28日,3本 ア中作製 正縮強度 JIS A 1108 材齢28日,3本 市げ強度 (JSCE-G 552) 材齢28日,3本 市げ強度 JIS A 1108 材齢7日,28日,各3本 曲げ強度 (JSCE-G 552) 材齢28日,3本 曲げたわみ測定 水中作製 (JSCE-G 552) 材齢28日,3本		호	2気量		JIS A 1128					
強度測定 ・ ・ ・		強度測定	与市佐制	圧縮強度	JIS A 1108	材齢28日,3本				
更化性状試験 <u>水中作製</u> <u>圧縮強度</u> <u>JIS A 1108</u> <u>材齢7日, 28日, 各3本</u> 曲げ強度(JSCE-G 552) <u>材齢28日, 3本</u> 曲げたわみ測定 <u>水中作製</u> (JSCE-G 552) <u>材齢28日, 3本</u>			メモド教	曲げ強度	(JSCE-G 552)	材齢28日,3本				
パー ^{1F姿} 曲げ強度 (JSCE-G 552) 材齢28日,3本 曲げたわみ測定 水中作製 (JSCE-G 552) 材齢28日,3本	更化性状試験		水市作制	圧縮強度	JIS A 1108	材齢7日, 28日, 各3本				
曲げたわみ測定 水中作製 (JSCE-G 552) 材齢28日, 3本			小中1F表	曲げ強度	(JSCE-G 552)	材齢28日,3本				
		曲げたわみ測定	水中	作製	(JSCE-G 552)	材齢28日,3本				
気中のパートンジェンジェンジェンジェンジェンジョン	水中試験		気	中		フランプコーン司抜き後				
水中試験 スランプフロー 常圧水中 (JISA 1150) 2017 (JISA 1150)		スランプフロー	常圧	水中	(JIS A 1150)	ヘノンショーン引扱と後, 20公で測定				
高圧水中 30万 で測定			高圧	水中						

お、水中試験では、流動特性の違いをより詳細 に把握するため、スランプコーン引き上げ後 30 分後において測定を実施した。

3. 試験結果

3.1 気中試験

VF を使用した配合における、繊維混入前後の スランプフロー減少率を図-4に示す。今回の 結果においては、いずれの配合においても、繊 維混入によるスランプフローの減少率は, Gvol130L まではほぼ一定となり, Gvol が 130L を超えると, Gvol が多いほど大きくなる結果と なった。これより, 粗骨材量と繊維量があるバ ランスを超えると、コンクリート全体の流動性 を低下させる傾向があることが明らかとなった。 これは、粗骨材と繊維が互いにコンクリート中 での流動を阻害し合い始めるためと考えられる。 また、同じ Gvol の配合において比較した場合、 s/m が大きい(モルタル中の細骨材量が多い)ほ どスランプフロー減少率が大きくなることが明 らかとなった。

VF および SF 繊維を使用した配合について, 繊維混入率と空気量の関係を図-5に示す。い ずれの配合においても,繊維を混入した配合で は無混入の配合と比較して空気量が多くなる傾 向となった。また,混入率と空気量には明確な 相関性が確認されなかったが,VF と SF を比較 すると,同混入率ではいずれも SF を使用した場 合の方が空気量が多くなる傾向となった。これ は,繊維の剛性が高い SF を使用した配合の方が, 練混ぜ中に空気を巻き込み易いためと考えられ る。

繊維混入率とスランプフロー値の関係を図-6に示す。いずれの配合も Gvol は 260L 以上で あるため、図-4 で述べたとおり、繊維添加が スランプフローに及ぼす影響は大きく、繊維混 入率が高くなるに従ってスランプフロー値が小 さくなる結果となった。また、Gvol305L で VF 混入率を 1.50%としたケースでは、目視観察にお いて繊維の分散状態に偏りが確認され、今回使 用した繊維を比較した場合、同一混入率では SF の方が材料分離抵抗性に与える影響は小さい傾 向があった。また、Gvol がより少ないケース (260L)においては、同一混入率では VF を使用 した方がスランプフロー値が小さい結果となっ た。

今回の試験結果から、繊維混入率の上限値は あるものの、繊維を混入した水中不分離性コン クリートにおいても、配合を工夫することによ って十分な流動性を確保できることが明らかに なった。

3.2 硬化性状試験

セメント水比(C/W)と水中作製供試体の圧縮 強度および曲げ強度との関係を図-7に示す。 これより、繊維を混入した水中不分離性コンク

図-6 繊維混入率とスランプフロー値(W/C55%)

リートにおいても,一般的なコンクリートと同様, C/W と圧縮強度,曲げ強度にはほぼ線形の 関係があることが明らかとなった。 繊維混入率と各種強度との関係を図-8に示 す。SFを使用した配合については、圧縮強度は 繊維種類や混入率に関わらずほぼ一定の関係を 示し、曲げ強度は混入率の増加とともに大きく なる結果が得られた。VFを使用した配合につい ては、気中作製した供試体における曲げ試験を 除き、繊維混入率の増加とともに強度が若干低 下する傾向を示した。これは、VFを使用した配 合では、水中作製した供試体においては、繊維 混入率が高いほど供試体作製時の試料の洗われ る程度が大きく、それが強度低下の要因になっ たと考えられる。

繊維混入率と水中/気中強度比の関係を図-9に示す。ここで、水中/気中強度比とは、水中 採取した供試体による試験結果を,気中採取し た供試体による試験結果で除した値である。こ れは、コンクリートの水中不分離性を評価する 指標であり、この数値が大きいほど、コンクリ ートの水中不分離性が高いと判断される。VF を 使用した配合では、圧縮強度および曲げ強度と もに、繊維混入率が高いほど、水中/気中強度比 が小さくなる傾向となった。また、SF を使用し た配合については、圧縮強度における水中/気中 強度比の低下は VF を使用した配合ほどではな く,曲げ強度における水中/気中強度比も繊維混 入率によらずほぼ一定であった。なお、いずれ の結果においても、「コンクリート用水中不分離 性混和剤品質規格(案)」¹⁾が示す,水中/気中強 度比(圧縮強度において 80%以上)以上を確保で きる結果であった。

25

曲げ試験における荷重-たわみ曲線を図-10 に示す。図中には、VFを使用した配合、SFを使 用した配合ともに供試体3本の試験結果を示し た。気中作製,水中作製のいずれの供試体につ いても、VFを使用した配合では、SFよりもひび 割れ発生時の荷重低下が認められる。しかしな がら、VFの水中作製供試体においても、繊維補 強による靱性は十分確保されることが明らかと なった。

3.3 水中試験

スランプフロー試験の環境条件による,スラ ンプフロー値の比較を図-11 に示す。既往の研

究³⁾では,気中でのスランプフロー値が,スラン プコーン引き上げ後 30 分において 600mm 程度 未満の場合は,気中<常圧水中≒高圧水中とな るが,600mm 程度以上の場合は,気中≒常圧水 中≒高圧水中となり,水中不分離性コンクリー トの流動性の程度により,気中と水中での流動 性状やスランプフロー値が異なることが確認さ れている。

今回の試験結果では、気中でのスランプフロ ー値が 675mmの繊維を混入しない配合において は、既往の研究と同様の結果となった。しかし ながら、繊維を混入した配合においては、気中 でのスランプフロー値が 600mm を超えているに もかかわらず、気中よりも常圧水中や高圧水中 における結果の方が大きくなり、繊維無混入の 既往の研究とは異なる結果となった。これには、 繊維の形状や混入率を含め、各種配合要因が影 響していると考えられるが、定量的に評価する ためには、今後、更なるデータの蓄積が必要で ある。

4. おわりに

今回の実験によって、次の事項が明らかとな り、繊維補強した水中不分離性コンクリートの 実用性が示された。

- (1) 一般的なコンクリートと同様、繊維混入 により空気量が増加、スランプフロー値 が低下するが、配合を工夫することによ り、十分な流動性を確保できる。
- (2) VFを使用した配合とSFを使用した配合 について比較すると、一般的なコンクリ ートと同様、同一混入率ではSFを使用 したほうが空気量の増加が大きい。また、 スランプフロー値への影響は小さい。
- (3) 一般的なコンクリートと同様、同一混入
 率では、SFの方が、VFよりも曲げに対
 する補強効果は高い。
- (4) VF, SF 共に、水中打設された供試体に よる曲げ試験においても、十分な靱性を 確保することができる。

(5) 試験条件によるスランプフロー値の関係は、繊維混入の有無で変化する。

謝辞

本実験において,多大なるご協力を頂いた,日 本海上工事(株)岸田氏に深い感謝の意を表し ます。

参考文献

- 岡田凌太,坂本光重,井保武寿、中川義隆: 明石海峡大橋主塔基礎の水中コンクリート の施工,コンクリート工学,vol.30, No.12, pp.31-42, 1992.12
- 2) 高橋昇,保坂鐵矢:水中不分離性コンクリートを用いた海面下20mの橋脚基礎の施工(関西国際空港連絡橋),水中不分離性コンクリートに関するシンポジウム論文集, pp.223-228, 1990.8
- 3) 土木学会:水中不分離性コンクリート設計施 工指針(案), 1991.5
- 4) 土谷正,大川裕:水中不分離性コンクリート に対するポリカルボン酸系高性能 AE 減水剤 の適用,土木学会第 54 回年次学術講演会講 演概要集,第5部,pp.1004-1005,1999.9
- 5) 岸田哲也,高田和法,大野俊夫,田崎邦夫: 水中不分離性コンクリートの流動性におよ ぼす水圧の影響,コンクリート工学年次論文 集, Vol.25, No.1, pp.1331-1336, 2000