論文 ニッケル被覆炭素繊維シートの電気防食における通電性能に関する 研究

小林 俊秋^{*1}·呉 承寧^{*2}

要旨:コンクリート構造物の電気防食において,新しい方法としてニッケル被覆炭素繊維シ ート陽極の可能性を検証した。この方法では,ニッケルの不動態を利用するため,陽極の酸 化劣化を防止することができる。しかも,安価であるため,低コスト化が期待できる。本研 究では,ニッケル被覆炭素繊維シートを用いて通電実験を行った。その結果,通電による陽 極分極特性に変化がなく,長期の通電に十分な耐久性があることが分かった。 キーワード:ニッケル被覆炭素繊維シート,イオン伝導,積算電流,不動態化剤

1. はじめに

炭素材料は,導電性,機械的強度等の優れた 特性により電気防食の陽極として用いられてい る。近年これらの材料は大気環境下のコンクリ ート構造物でも用いられるようになり、これに 対応するために,炭素繊維シートを陽極にした 電気防食の開発を行なってきた。さらに、耐食 性を向上させたニッケル被覆炭素繊維シートに 着目した。本研究では陽極材料の開発で一番問 題になっている耐久性を適切に評価することを 目的として,実験 I では, 陽極の耐久性につい て基礎的な研究を行った。ニッケル被覆炭素繊 維シート(以下, Ni/CFS と記す)の耐久性実験 は、NACE(米国腐食防食協会)法を参考にして 実施した¹⁾。NACE では, 陽極表面積当り 110mA/ mの電流を40年間継続して通電する積算電流量 で陽極の耐久性能を評価すると仮定し、同じ積 算電流量の 8.9A/m²×180 日をコンクリート環境 模擬水溶液中で通電して陽極の電位変化量が4V 以下を合格としている。実験Ⅰに続き、実験Ⅱ では、システムの耐久性について検討した。シ ステムの耐久性は、電気防食システムを設置し たモルタル試験体を用いて通電を実施し、 電圧 と陽極電位で評価した。

2. 実験 I (陽極の耐久性実験)

2.1 実験概要

(1) 実験の要因と水準

米国腐食防食協会 (NACE) に規格化された陽 極材の耐久性試験法を参考にして,Ni/CFS の耐 食性を、定電流通電を行うことにより評価する。 ニッケルは、被覆が容易で、その被覆型陽極は、 高い電流密度で通電ができ,機械加工も容易で, 消耗が小さく, スラッジの発生もなく, 低い酸 素過電圧等の利点がある。また、ニッケルはア ルカリ水溶液の全濃度にわたり、常温から高温 まで優れた耐食性を有する。この耐食性は, Ni(OH)2不働態被膜による。この被膜は、高濃度 の塩化物環境では溶解するが、OHや NO3など の陰イオンを不働態化剤として加えることによ り再不働態化できる²⁾。そこで, Ni/CFS の耐食 性を,アルカリ性電解溶液中で行なう。さらに, 陰イオンを, OH, SO₄²⁻, NO₃とし, その金属塩 水溶液を基準電解液とする。耐久性の促進条件 として,基準電解液に塩化ナトリウム (NaCl) を混合し、混合比を変えた電解液を調合する。 通電電流を 20, 2, 0.2A/m として, 温度 20℃で 陰極・陽極間の電流を一定とした定電流通電を 180日間行う。要因と水準を表-1に示す。

*1	オリエンタル建設	(株)	技術研究所		(正会員)
*2	オリエンタル建設	(株)	技術研究所	工博	(正会員)

陰イオ ン	金属塩	濃度(%)	NaCl 濃 度(%)	電流 (A/㎡)	
OH.	Ca(OH) ₂	飽和	0 ~ 3.5	20~0.2	
OII	NaOH	0~8		2010.2	
SO4 ²⁻	Na ₂ SO ₄	10, 20	3	80	
NO ₃ ⁻	NaNO ₃	20~40		0.9	

表-1 要因と水準(実験-I)

(2) 実験装置

図-1に示すように、実験装置は、ガルバノ スタット(北斗電工社製,HA-151)と電解槽か ら成る。測定系を試料極(WE),対極(CE),照 合電極(RE)の3電極式とし,試料極には,Ni/CFS を,対極にはPtを,照合電極にはAg/AgCl(飽和 KCl)電極を,電解槽には、高さ16cm×直径9cm のガラス製ビーカーを用いた。Ni/CFS 試験片の 通電するシート面は,20c m²(陽極表面積40cm²), 電解液の浸透を防止するために気液界面間をエ ポキシ系樹脂で被覆した。

図-1 実験装置

(3) 測定方法

電位は、WE と RE 間,電圧は、WE と CE 間 をエレクトロメーター(北斗電工社製 HE-104) により測定した。電流は、無抵抗電流計(北斗 電工社製 HM-104)から測定し、長時間通電によ る表面変化を目視により観察した。

2.2 実験結果および考察

(1) 飽和 Ca(OH)2 水溶液での経時変化

飽和 Ca(OH)₂ 水溶液,通電 7 日の条件で電解 装置に通電した場合,Ni/CFS および溶液の変化 を目視観察した結果を表-2に示す。0wt%NaCl 水溶液以外の溶液では,0.2~20A/m²の各電流と もに,試料表面の一部に淡緑色,黒色に変色す る腐食が認められた。通電は,10 日後に中止し た。飽和 Ca(OH)₂ 水溶液中では,含有量に関わ らず CIが存在する溶液では,陽分極下で Ni/CFS には腐食が発生することが明らかになった。

電流 A/m ²	通電後	7 日							
	NaCl(wt%)	0	0.05	0.1	0.2	0.5	1	3.5	
20	表面変化	なし	なし 一部黒色						
20	析出物	なし	黑色剥離						
	溶液色調変化なし								
	NaCl(wt%)	0	0.05	0.1	0.2	0.5	1	3.5	
2	表面変化	なし	一部黒色						
2	析出物	なし	_						
	溶液色調	変化なし							
	NaCl(wt%)	0	0.05	0.1	0.2	0.5	1	3.5	
0.2	表面変化	なし							
0.2	析出物	なし							
	溶液色調	変化なし							

表-2 飽和 Ca(OH)2 溶液での表面状態と色調変化

(2) NaOH 水溶液中での経時変化

電流密度 0.2~20A/m², 0~8wt%NaOH 濃度 +3wt%NaCl 水溶液の条件で電解装置に通電した 場合, Ni/CFS および溶液の変化を目視観察した 結果を表-3に示す。同表より,通電180日後, 4wt%NaOH 以上では, 0.2, 2, 20A/m²の各電流 ともに,目視による腐食は観察されず未だ金属 光沢を留めており,良好な表面状態の皮膜であ ることがわかった。腐食性の強い3 wt%NaCl 水 溶液中で過酷な通電条件にもかかわらず,NaOH を添加した水溶液では,十分な耐食効果が認め られ,陽極に悪影響がないと思われる。この実 験の積算電流は,20A/m²×0.5年=10A/m²年である。 NACE で規定した防食電流(110mA/m²)で割る と,10A/m²年/110mA/m²年=90.9年となる。NACE で規定した防食電流では,約90年に相当する積 算電流量を負荷したことになる。溶液色調は, 無色から茶褐色⇒濃茶色に変化した。NaOH 濃 度が濃く,電流が高くなるにつれ,これらの変 色性は顕在化した。この色調変化は,溶解した 炭素によるものと考えられる。一方,1wt%NaOH 以下では,激しい腐食が認められ,一部電圧増 加のため通電を中止した。通電直後と180日後 の陽極の電位変化を図-2に示す。同図より, 電位が通電の初期値に比較し,4V以上上昇しな いことが合格基準である NACE 法を参考にする と,20A/mの0,0.3wt%NaOH と 2A/mの 0wt%NaOH 以外は合格する電位である。

表一3 NaOH 水溶液中での表面状態と色調変化

-							
電流	通電後	180 日					
A/m^2	NaCl(wt%)	3					
	NaOH(wt%)	0	0.3	0.5	2	4	8
20	表面変化			黒色		変化なし	
20	析出物	中	止	淡緑	茶褚	各色	なし
	溶液色調			変化	なし 濃		茶色
	NaOH(wt%)	0	0.3	0.5	2	4	8
~	表面変化	+		黒色		変化なし	
2	析出物	뿌	一部黒色			なし	
	溶液色調	II.		変化なし	/	茶褐色	
	NaOH(wt%)	0	0.3	0.5	2	4	8
0.2	表面変化	一部淡緑色 黒			変化	となし	
0.2	析出物	一部黒色			なし		
	溶液色調	変化なし			薄茶色		

(3) Na₂SO₄, NaNO₃水溶液中での経時変化

通電 25 日,電流密度 0.2~20A/m², 10~20wt% Na₂SO₄ 濃度または 10~40wt% NaNO₃+3%NaCl 水溶液の条件で電解装置に通電した場合, Ni/C FS および溶液の変化を目視観察した結果を表-4に示す。通電7日後で7種類全ての溶液では, 既に試験片の表面部に薄い緑色あるいは黒色に 変色するなどの目視による腐食が認められた。 早期に,試料が腐食したので通電は, 30 日間で 中止した。

重达	通電後	25 日						
电/m	NaCl(wt%)	3						
A/ 111	(*****0/)	Na ₂ SO ₄		NaNO ₃				
	(wt/o)	10	20	20	30	40		
8.0	表面変化	黒色						
0.9	析出物	茶褐色						
	溶液色調	茶色						

表-4 Na₂SO₄ および NaNO₃ 水溶液中での表 面状態と色調変化(25日)

3. 実験Ⅱ(システムの耐久性実験)

3.1 実験概要

(1) 実験の要因と水準

コンクリート構造物の外表面に固体電解質を 用いて陽極を包囲して、コンクリート構造物と 陽極をイオン伝導的に一体化することがシステ ムの要求性能である。また、これらの固体電解 質は、陽極の不動態皮膜を生成するに充分なア ルカリ環境であることが要求される。高アルカ リの影響を受けず、溶出しにくく、長期間保水 性能を持続する固体電解質として水硬性材料、 粘土鉱物、高分子材料等の候補材料と配合を選 定した。実験 I の成果より、NaOH 溶液を基準電 解液とした。基準電解液に固体電解質を混合し、 混合比を変えた固体電解質を配合する。アルカ リ量を 0~15wt%NaOH、電流を 20~200mA/m²と して、屋外暴露環境で定電流通電を行う。要因 と水準を表-5に示す。

固体電解質		記号	アル カリ	濃度 (wt%)	電流 (mA/ ㎡)
	普通 ルト ンド メント	OPM			20~ 200
モルタ ル	膨張系 混和材	EPM		0, 4, 8	
	エマル ション 系ポリ マー	РСМ	NaOH		
粘土鉱 物	ベント ナイト	CMB		8, 15	40~
高分子 材料	吸水性 高分子	SPH			200

表-5 要因と水準

(2) 試験体形状と基材モルタル配合

実験は、モルタル試験体で行う。固体電解質 の乾燥を防止するため、樹脂フィルムを試験体 上部に巻きつけた。通電するシート面のサイズ は、105×40mm とした。モルタル試験体は、110 ×70×38mm、陰極材は、チタン製板、基材モル タルの配合は、W/C=34%、C/S=1、CI⁻量=6kg/m³ とした。試験体の形状を図-3に示す。

図-3 モルタル試験体

(3) 測定方法

電圧は、陽・陰極間の電位差、陽極インスタ ントオフ電位(以下 IO 電位と記す)は、電流遮 断直後の電位を、エレクトロメーターを用いて 測定する。電源は、ガルバノスタットを用いた。

3.2 実験結果および考察

(1) 電圧, 陽極分極特性と固体電解質の種類

電解液を 8wt%NaOH, 電流密度を 100mA/m²の 条件での普通ポルトランドセメントを用いたモ ルタル(以下 OPM と記す),膨張系混和材を用 いたモルタル (以下 EPM と記す), エマルショ ン系ポリマー混和剤を用いたモルタル(以下 PCM と記す), 粘土鉱物を用いた固体電解質(以 下 CMB と記す),吸水性高分子を用いた固体電 解質(以下 SPH と記す)の計5種類の固体電解 質を用いた試験体に通電したときの電圧を測定 して各試験体を比較した結果を図-4, 陽極の IO 電位を測定して各試験体を比較した結果を図 -5に示す。本文中の電位(以下 E と記す)は すべて Ag/AgCl (飽和 KCl) 電極を基準にして表 示した。また、暴露環境温度の経時変化を図-6に示す。図-4,5,および図-6に示すよ うに、電圧および陽極 IO 電位には温度依存性が 見られ、暴露試験環境の温度が高くなると減少 し、また温度が低くなると増加する傾向が見ら れた。図-4の結果より, PCM は, 通電初期に, 電圧が急激に上昇した。CMBは、徐々に電圧値 が上昇し 200 日付近で急激に上昇した。また, 試験体を屋外に暴露して,長期間保管すること により、CMB にクラックが発生した。発生した クラックが、Ni/CFS との接合界面に達しており、 接合界面の乾燥が加速され,界面のイオン伝導 性が低下したためであると考えられる。一方, OPM, EPM, SPH には, 大きな変化は見られな かった。これは、これらの固体電解質の含水率 が、PCM に比較し極めて大きく、通電機能に必 要なイオン伝導性を保ち続けているためと考え られ、材料機能の当初の目的を達成している。 図-5の結果より, CMBは, OPM, EPM, SPH に比べ,通電初期から陽極 IO 電位が最も大きく, 50日以降は、その差が一段と大きくなった。SPH が全期間で 0.5V(E)以下と最も低い電位を示し, 耐食性を示していることが分かる。一方, OPM, EPM は, OPM では最大 1V(E)で, EPM とほぼ同 様の挙動を示した。

図-4 5種類の固体電解質を用いた試験体の 電圧の経時変化

図-5 5種類の固体電解質を用いた試験体 の陽極の IO 電位の経時変化

図-6 暴露環境温度の経時変化

(2) 電圧および陽極分極特性とアルカリ量

0~15wt%NaOH 濃度, 100mA/m²の条件での SPH, EPM を用いた試験体に通電したときの電 圧を測定して両者を比較した結果を図-7,陽 極のIO電位を測定して両者を比較した結果を図 -8に示す。図-7の結果より, SPH の電圧は, EPM と比較して温度依存性が小さく,全体的に 数 V 低い値を示し、その差は低温度側で顕在化 した。SPH の電圧が, EPM に比して低いのは, SPH の特徴である高い保水性能により、イオン 伝導性が安定化した結果と考えられる。SPH で は、15wt%は、8wt%よりも若干低い電圧である が,殆ど大差がない。EPM の通電電圧に及ぼす NaOH 濃度の影響として, NaOH を添加すると若 干ではあるが共に電圧は大きくなった。これは, アルカリの添加によりセメント水和物がよりポ ーラスになり EPM の含水率が低下することでイ オン伝導性が低下したためと考えられる。図ー 8の結果より, SPHの IO 電位は, EPM と比べ, 電圧と同様,全体的に 0.2V 程度低い値を示し、 電位の上昇が抑制されており、高い耐食性を示 している。

一方, EPM の陽極の IO 電位は、

0~ 8wt%NaOHで、ほぼ同様の挙動を示し、試験体 の電圧と比較して温度依存性, NaOH 濃度依存性 が小さく,全体的に1V(E)以下と安定した電位を 示した。

図 – 7 NaOH 濃度を変化させた時の SPH, EPM の電圧の経時変化

(3) 電圧および陽極分極特性と電流密度

電流密度 40~200mA/m², 8wt%NaOH 濃度の条 件での SPH と EPM に通電したときの電圧を測定 して両者を比較した結果を図-9, 陽極 IO 電位 を測定した結果を図-10 に示す。図-9の結果 より, SPH の電圧は,電流密度が異なる試料間 での大きな違いは見られず,各試料ともに 2V 程 度の低い値を示した。これは,電流密度に比較 的関係なく SPH 本来のイオン伝導強度を示した 結果と解釈できる。EPM は,電流密度と電圧の 関係に強い相関が認められ,電流密度が大きく なるに従い,電圧は増加する傾向を示した。

図 – 9 電流密度を変化させた時の SPH, EPM の電圧の経時変化

これは EPM が、電流密度の増加に伴う導電機能 に必要なイオン伝導の不足によるものと考えら れる。図-9,および図-10に示すように、SPH, EPM の陽極の IO 電位は、試験体の電圧と比較し て電流密度依存性、温度依存性、が小さく、全 体的に 1V(E)以下と安定した電位を示した。

図-10 電流密度を変化させた時の SPH, EPM の陽極 IO 電位の経時変化

4.まとめ

イオン伝導を安定化させた Ni/CFS の分極特 性について定電流通電法を用いて検討した結果, 以下のような結論を得た。

 3%NaCl水溶液中で20A/m²で180日間の過酷な通電条件であっても、4wt%NaOH以上の高濃 度アルカリ水溶液中の場合、Ni/CFSは高い耐食 性を示した。

2) EPM, SPH の固体電解質を用いたモルタル試 験体は,安定したイオン伝導性による通電機能 により,比較的高い電流密度でも長期間システ ム電圧を維持している。また,その陽極も,低 い IO 電位を維持している。

参考文献

- 1) NACE Standard TM0294-94 Item No.21225
- 2) 電気化学便覧, P.249,電気化学会,2000