## 論文 圧着接合されたプレストレスト・コンクリート造立体柱梁接合部の地 震時挙動

舛田 尚之\*1·北山 和宏\*2·岸田 慎司\*3

要旨:プレキャストの柱および梁を PC 鋼材で圧着接合する方法(PCaPC 圧着工法)によっ て作られた骨組の接合部のせん断耐力を把握する目的で,立体架構を含む接合部せん断破壊 型試験体 6 体の静的正負交番繰返し載荷実験を行った。十字型接合部せん断破壊型の試験体 の耐力は梁 PC 鋼棒の付着や配置位置に依存せずコンクリート強度による RC 柱梁接合部の せん断強度評価式により評価できることが確認できた。2 方向水平力を受ける立体柱梁接合 部せん断強度の方が平面接合部よりも大きかった。

キーワード:立体架構、プレストレスト・コンクリート、柱・梁接合部、圧着

#### 1. はじめに

これまでに PCaPC 造の柱梁接合部に関する研 究はいくらか行われてきたが接合部せん断破壊 型の研究はほとんど行われておらず,特に立体 架構の2方向加力実験は皆無である。

そこで、本実験は試験体形状を変数とした接 合部破壊型スラブなし PCaPC 造立体柱梁接合部 試験体に水平 2 方向交番載荷実験を行い、接合 部せん断破壊型立体架構の接合部せん断耐力, および接合部のせん断強度の 2 軸相関について 検討することを主目的とする。さらにそれぞれ に付随した平面試験体についても実験を行い, 立体試験体の実験結果と比較した。 の仮想反曲点位置で切り出したものと考え,試 設計建物(純フレーム構造)の3,4階部分の柱, 梁を参考に縮尺2/5程度とし(実験装置の容量か ら決定した),試験体の柱断面を350mm×350mm, 梁断面を250mm×400mm,柱芯から梁端支持ま でが1600mm,梁芯から上柱および下柱加力点ま でがそれぞれ1415mmと設定した。せん断スパ ン比は柱が4.0,梁は4.3である。梁は柱に圧着 接合されており,油圧ジャッキを用いてプレス トレス力を導入し,その後,試験体P4以外はシ ース管内にグラウトを注入した。

コンクリート強度・モルタル強度・グラウト 強度は各試験体共通とし,接合部せん断破壊を 先行させるために,柱のコンクリート設計強度

## 2. 実験概要

## 2.1 試験体の概要

図-1 に試験体 の形状と寸法を示 し,表-1 に試験 体諸元を示す。試 験体は中間階柱・ 梁接合部とこれに 連なる柱・梁部材

| 試験体名                  | S1   | S2               | P1         | P2         | P3         | P4           |
|-----------------------|------|------------------|------------|------------|------------|--------------|
| 梁のPC鋼棒配置 <sup>※</sup> | A+A' | A'+A             | Ā          | 4          | В          | С            |
| 接合部横補強筋               |      | $2-D10(p_{jw} =$ | 2-D10 1set | 2-D10 3set |            |              |
| グラウト材                 |      | 普                |            | なし         |            |              |
| 試験体形状                 | 立体内柱 | 立体側柱             | 平面十字型      | 平面ト型       | 平面-        | 十字型          |
| 【共通因子】                |      |                  | ・柱のコンク     | リート強度      |            | 30MPa        |
| ·軸力比(軸力)              | (    | 0.13(478kN)      | ・梁のコンク     | リート強度      |            | 60MPa        |
| ·緊張力 / 降伏強度           |      | 0.6              | ・目地モルタ     | ル強度        |            | 60MPa        |
| •柱断面                  |      | 350×350mm        | ・柱主筋       |            | 4-D32(SBI  | PR 930/1080) |
| ·梁断面                  |      | 250×400mm        | ・梁PC鋼棒     |            | 2-D36(SBPF | R 1080/1230) |
|                       |      |                  |            |            |            |              |

表-1 試験体諸元

\*1 東京都立大学大学院 工学研究科 建築学専攻 修士(工学) (正会員)
\*2 東京都立大学大学院助教授 工学研究科 建築学専攻 工博 (正会員)
\*3 東京都立大学大学院助手 工学研究科 建築学専攻 博士(工学) (正会員)



図-1 試験体概要(立体試験体 S1)



図-2加力装置図

表-2 コンクリートの力学特性

|      | コンクリート・柱 |       |        |          | コンクリート・梁 |       |        |          |
|------|----------|-------|--------|----------|----------|-------|--------|----------|
| 試験体名 | 圧縮強度     | 割線剛性  | 割裂引張強度 | 圧縮強度時ひずみ | 圧縮強度     | 割線剛性  | 割裂引張強度 | 圧縮強度時ひずみ |
|      | MPa      | GPa   | MPa    | %        | MPa      | GPa   | MPa    | %        |
| P1   | 29.95    | 25.01 |        | 0.22     | 74.01    | 34.04 |        | 0.28     |
| P2   | 31.81    | 24.98 |        | 0.23     | 76.94    | 34.89 | 4.40   | 0.29     |
| P3   | 31.36    | 24.99 | 2.20   | 0.23     | 76.23    | 34.69 |        | 0.29     |
| P4   | 31.81    | 24.98 | 2.29   | 0.23     | 76.94    | 34.89 |        | 0.29     |
| S1   | 31.81    | 24.98 |        | 0.23     | 76.94    | 34.89 |        | 0.29     |
| S2   | 31.81    | 24.98 |        | 0.23     | 76.94    | 34.89 |        | 0.29     |

表-3 鉄筋の力学特性

降伏応力度 ヤング係数 降伏ひずみ

|       |     | MPa     | GPa    | %    |
|-------|-----|---------|--------|------|
| 梁PC鋼材 | D36 | 1154.96 | 197.98 | 0.85 |
| 柱主筋   | D32 | 1011.02 | 190.67 | 0.79 |
| 横補強筋  | D10 | 394.85  | 171.36 | 0.23 |

表-4 グラウト・モルタルの力学特性

| 圧縮強度 | 割線剛性 | 割裂引張強度 | 圧縮強度時ひずみ

|        | MPa   | GPa   | MPa  | %    |
|--------|-------|-------|------|------|
| 目地モルタル | 94.60 | 31.14 | 2.37 | 0.45 |
| グラウト   | 68.93 | 14.43 | 1.19 | 0.57 |

は梁の設計強度の半分とした。梁 PC 鋼棒には異形 PC 鋼棒を用い,緊張力として PC 鋼材降伏強度の 0.6 倍のプレストレス力を導入した。

実験要因は試験体形状, PC 鋼材の配置, グラウト材の有無とした。

試験体 P1 は基準試験体であり、立体架構を想定した PC 鋼棒配置の平面十字型試験体である。 試験体 P2 は P1 をト型にした試験体であり、P3 は PC 鋼棒配置が上下対称で梁中心に寄った平 面十字型試験体である。これは PC 鋼材の位置の 差異が接合部せん断強度に与える影響を調べる



#### 図-3 加力パス

ために設定した。また, P4 はグラウトを注入し ないことで付着を無くした試験体である。

S1 は試験体 P1 をプロトタイプとした立体内 柱試験体である。同様に S2 は P1 と P2 を組み合 わせ北側に梁が無い側柱をモデルとしている。 使用した材料特性を**表-2, 3, 4**に示す。

## 2. 2 実験方法

加力装置を図-2 に示す。試験体の梁端はピン・ローラー支持,下柱はピン支持とした。上 柱加力点には3基のジャッキを取り付け,鉛直 方向に一定軸力(軸力比=0.13)を導入した後, 水平方向に正負交番載荷を行った。平面試験体 は東西に R=1/400rad. を 1 サイクル,1/200・ 1/100・1/50rad. を2サイクルづつ, 1/33rad. を 1 サイクル,1/25rad. を 2 サイクル行った後正方 向(西側)を押切とした。立体試験体は図-3 に示すように柱頭加力点の描く軌跡が田の字型 となるように載荷を行った。ただし最初の1サ イクルは西→東→南→北へそれぞれ 1/200rad. づつ1方向載荷を行った。その後田の字載荷と して 1/200・1/100・1/50rad. を2サイクルづつ,1/33, 1/25rad. を1サイクルづつ行った後,正方向(西 および南側)へそれぞれ1方向載荷を押切とし た。2 サイクル目以降の加力パスは図-3のA~ Hの八の字型を基本とし、同変位繰り返しのサイ クル時に I~P の方向へ加力した。またこれ以降 便宜上東西方向を主方向,南北方向を直交方向 として加力状態は図-3の記号 A~P で示す。

#### 3. 実験結果

## 3. 1 破壊状況

R=1/25rad.時のひび割れ状況を図-4に示す。 全試験体に共通して接合部せん断ひび割れが目 立って発生した。特に立体試験体は接合部部分 に著しい破壊がみられた。プレストレス導入の 効果と柱コンクリートに先に大きくひび割れ が入ってしまうことから全試験体共通して梁 の曲げひび割れがそれほど多く見られなかっ た。しかし立体試験体では最大耐力後の梁端部 圧壊が見られた。全試験体で大変形時において も柱主筋・梁 PC 鋼棒は降伏しなかった。

## 3. 2 変形成分

図-5に各試験体の最大耐力を迎えた加力方 向のピーク時における層間変位構成要素の推 移を示す。ただし測定治具の作動不良のため信 頼できる層間変形角 1/50rad.(全試験体の最大 耐力時)までとした。試験体 S2 の接合部変形 の割合は柱および梁たわみを層間変位成分に 換算し,その値を層間変位から差し引くことに より求めた。いずれの試験体も接合部の変形成 分が他を上回っていることと,接合部のひび割 れ状況などから最終的に試験体全てに共通して



図-5 変形成分

最大耐力を決定した破壊性状は接合部せん断破 壊型と判定した。ただしト型試験体 P2 の下端筋 引張時には後述のように梁端部が柱にめり込ん で破壊した。

## 3.3 層せん断カー層間変形角関係

図-6に層せん断力-層間変形角関係を示す。 全試験体共通して層間変形角 1/50rad. の時に 最大層せん断力に達した。計画当初梁断面 A(図-1参照)の試験体,特にト型試験体はPC 鋼棒の配置が偏っているために同サイクルで 正負の耐力が異なると思われたが, 立体試験体 である S2 の直交方向においてその傾向は見ら れなかった。しかし,平面試験体のP2は1/50rad. 時正負の最大耐力の差が 32%あった。これは 負側が接合部せん断破壊を起こしたのに対し て正側が梁の柱めり込み破壊を起こした為で ある (図-5 参照)。 試験体 P1・P3・P4 の包 絡線を比較すると大きな差は見られない。この ことについては 6. で言及する。S1, S2 の主方 向の層せん断力ー層間変形角関係は最大耐力 時まで P1 と比較して耐力が大きくなっており, 最大耐力は約20%上昇した。また2方向同時加 力時の耐力はベクトル和でそれぞれ 25%, 18% 上昇した。最大層せん断力後接合部周りの柱コ ンクリート,特に隅角部の破壊が顕著になった ため急激に耐力が低下した。

## 3.4 二軸の層せん断力関係

最大層せん断力を(1)式によってコンクリー ト強度で基準化した二軸相関を図-7に示す。

 $V_{c \max}$  $F_i \cdot b_c \cdot D_c$ 

(1)

V<sub>max</sub>:柱の最大層せん断力

 $F_i: 0.8 \cdot \sigma_B^{0.7}, b_c: 柱幅, D_c: 柱せい$ 

基準化された立体試験体の層せん断力は, 平面 試験体 P1, P2の基準化された円形および矩形の

表-5 鋼材の導入張力

|                                                                                 | 緊張直後  |                |      | 実験直前 |                |                |      |      |
|---------------------------------------------------------------------------------|-------|----------------|------|------|----------------|----------------|------|------|
| 試験体名                                                                            | Tt    | Т <sub>ь</sub> | Pe   | Date | Τ <sub>t</sub> | Т <sub>ь</sub> | Pe   | 減少率  |
|                                                                                 | (MPa) | (MPa)          | (kN) | (日)  | (MPa)          | (MPa)          | (kN) | (%)  |
| P1                                                                              | 645   | 653            | 1321 | 73   | 544            | 551            | 1114 | 15.7 |
| P2                                                                              | 620   | 587            | 1228 | 115  | 521            | 494            | 1034 | 15.8 |
| P3                                                                              | 652   | 657            | 1333 | 92   | 549            | 554            | 1123 | 15.7 |
| P4                                                                              | 665   | 669            | 1359 | 99   | 560            | 564            | 1144 | 15.8 |
| S2ew                                                                            | 653   | 669            | 1346 | 154  | 548            | 562            | 1130 | 16.0 |
| S2ns                                                                            | 610   | 591            | 1223 | 154  | 610            | 591            | 1223 | 10.0 |
| T <sub>t</sub> :上側のPC鋼棒応力度, T <sub>b</sub> :下側のPC鋼棒応力度, P <sub>a</sub> :プレストレスカ |       |                |      |      |                |                |      |      |

**層せん幣力(kN**) -50 - 100 最大層せん断力 :128.85kN 最大層せん断力 ∶−105.49kN -150 -200 200 (c)P3 (d)P4 150 100 (kr 50 層せん断力 0 -50 最大層せん断力 :125.27kN 最大層せん断力 :121.92kN -150 -200 200 (e)S1EW (f)S1NS 150 100 雪山る)所力((M) 50 -50 最大層せん断ナ 最大層せん断ナ :160kN :130kN -150 -200 200 (g)S2EW (h)S2NS 150 P2の包絡線 100 層 せ ん 断 力 (kN) 50 -50 最大層せん断力 :152.50kN 最大層せん断力 :101.97kN -150 -200 -0.06 -0.04 -0.02 屋間3 0.02 0.04 0.06 -0.06 -0.04 -0.02 0.02 0.04 0.06 -0.02 0 0.02 層間変形角(rad.) 層間変形角(rad.)

(b)P2

P1包絡線

08

200 (a)P1

150

100

50

0

最大層せん断き





## 図一7 二軸相関

相関曲線の外側もしくはほぼ矩形相 関曲線上に位置した。すなわち, 各 梁方向の応力に対してそれぞれ個別 に設計することで,任意方向のせん 断力に対して接合部を安全に設計で きることの妥当性が認められた。

Date:PC張力導入後の日数

## 4. PC 鋼材の張力推移

プレストレス導入後, コンクリートのクリー プなどの影響によるプレストレス損失率をプレ ストレス導入直後と実験開始直前の PC 鋼材の 応力度から検討する。表-5 に各試験体の導入直 後と実験開始時の PC 鋼材応力度と減少率を示 す。平均して 16%の張力減退が見られた。

### 5. 接合部入力せん断力

図-9に各試験体の接合部入力せん断力と層 間変形角の関係を示す。文献[1]のRC 柱梁接合 部のせん断強度評価式を準用して求めたせん 断強度を合わせて示す。ここで接合部入力せん 断力V<sub>μ</sub>を図-8に示す定義に従い,梁危険断面 におけるコンクリート圧縮域の重なりを考慮 して PC 鋼棒の応力を用いて下式で求めた。こ れは接合部中央断面におけるせん断力であり, 厳密には最大層せん断力ではないが、梁危険断 面左右のコンクリート圧縮域が等しい場合に は最大値となる。厳密に求めると式が非常に煩 雑になることと,求められる結果にあまり差異 が見られないことからこの式を採用した。

I. 十字型の場合

1) 圧縮域深さが梁せいの 1/2 未満の場合  $V_{ih} = P_{i1} + P_{h2} - V_{c}$ (2)2) 圧縮域深さが梁せいの 1/2 以上の場合  $V_{jh} = \alpha_2 \cdot C_{c2} - P_{t2} + P_{t1} - \alpha_1' \cdot C_{c1} - V_c$ (3)  $C_{c1} = P_{t1} + P_{b1}$ (4)  $C_{c2} = P_{c2} + P_{b2}$ (5)  $\alpha_1 = 1 - \alpha_2$ ,  $\alpha'_1 = 1 - \alpha'_2$ (6)  $\alpha_{2} = (a - D/2)^{2}/a^{2}$ , (7) $\alpha'_{2} = (a' - D/2)^{2} / a'^{2}$ Ⅱ. ト型の場合  $V_{_{ih}} = P_{_{b2}} - V_{_c}$ (8)

ここで $P_{11}$ ,  $P_{12}$ は上端のPC鋼棒の引張力,  $P_{b1}$ ,  $P_{b2}$ は下端の PC 鋼棒の引張力,  $C_{c1}$ ,  $C_{c2}$ はコン クリートの圧縮合力,  $V_{c}$ は柱のせん断力, a, a'は圧縮域深さである。

平面試験体 P1・P3・P4 の接合部入力せん断力 ー層間変形角関係はほぼ同一の履歴を示した。 全ての試験体は 1/50rad.の最大耐力後に入力せん



図-8 接合部まわりの応力関係



図-9 接合部入力せん断応力度-層間変形角関係

断力は低下していった。平面試験体 P1・P3・P4 は RC 柱梁接合部のせん断強度評価式を準用し て求めたせん断強度の平均値と下限値の間にあ ることが確認できた。立体試験体 S2 の接合部入 力せん断力は図-3A 方向ピーク時 P1 最大接合 部入力せん断力と比較して 30%増大し,平均値 の評価式と比較しても 14%上回った。図-9(f) の入力せん断応力度は B の方向に加力した時の ベクトル和の値を示している。P1 と比較して最 大値は 21%上昇した。

## 6 接合部まわりの応力状態

3.3節で試験体 P1・P3・P4 の履歴がほぼ同様 であったことから,その接合部まわりの応力を 把握するべく測定された梁せん断力より求まる 梁危険断面の曲げモーメントと上下の PC 鋼棒 の応力を用いてコンクリート圧縮合力位置を計 算した。図-11 に試験体 P1 の圧縮合力位置,引 張合力位置,応力中心間距離の推移を示し,図 -10に層間変形角 1/50rad.時(最大層せん断力時) の具体的な値を示す。Mc は梁危険断面位置の曲 げモーメントを示している。

試験体 P1, P3, P4 を比較すると, 引張合力位 置は梁 PC 鋼棒の中間に位置したが, 応力中心間 距離が異なったため全試験体で圧縮合力位置が ほぼ等しくなった。梁危険断面でのコンクリー ト圧縮域形状を三角形とすると, このことは圧 縮域深さがほぼ等しいことを示す。また, PC 鋼 棒の引張力も大きな違いが無いことから, 接合 部入力せん断力がほぼ等しくなり, 接合部せん 断破壊を起こした試験体 P1, P3, P4 は最大層せ ん断力も同程度のものとなった。

## 7. まとめ

(1) 立体架構と平面架構の層せん断力を比較し た場合,両側に直交梁が付いた場合 25%,片側 に直交梁が付いた場合に 13%の耐力上昇が見ら れた。直交梁が片側に付く立体十字型試験体の 接合部最大せん断力は平面十字型試験体と比較 して,十字型方向載荷時には 30%,十字型およ びト型方向の 2 方向に同時載荷したときの合せ ん断力は 13%,それぞれ増大した。

(2) 立体架構における二軸せん断力下の層せん 断力は矩形相関曲線の外側に位置した。すなわ ち各構面の応力に対して各々個別に設計するこ とで,任意方向のせん断力に対して接合部の設 計が出来ることを確認した。

(3) グラウト材のないアンボンド試験体を含む PCaPC 圧着接合の試験体を接合部せん断破壊さ せた。その結果 RC 柱梁接合部のせん断強度評価 式を適用できることが確認できた。



## 図-10 1/50rad. 時の接合部周りの応力 (試験体 P1)



# 図-11 圧縮合力位置,引張合力位置, の応力関係,応力中心間距離の推移

(試験体 P1)

謝 辞 本研究は、日本学術振興会科学研究費 補助金(基盤研究 B:研究代表者 西川孝夫, 若手研究 B:研究代表者 岸田慎司)によって 実施した。また、高周波ネツレン(株)によりネジ ボンの提供を受けた。

#### 参考文献

- 日本建築学会:鉄筋コンクリート造建物の靱性 保証型耐震設計指針(案)・同解説,1997
- 2) 北山和宏,岸田慎司,森山健作,丸田誠,木村 暁子:圧着接合されたプレストレスト・コンク リート柱・梁接合部の力学性状に関する研究 (その1~その3),日本建築学会大会学術講演 梗概集,pp. 613-618, 2002.8