論文 鉛直力と曲げモーメントを受ける杭支持独立フーチングの破壊性状 と耐力に関する実験的研究

鈴木 邦康*1

要旨:本報では,鉛直力と曲げモーメントを受ける杭支持独立フーチングの破壊性状を把握 するため,4本杭支持の場合について,フーチングに作用させる鉛直荷重の作用位置(偏心 距離)を変化させて破壊実験を行なった。その結果,偏心距離の長短により破壊形式に違い が見られる場合があること,偏心距離が短い場合の耐力低下は僅かであり,ある偏心距離を 境に耐力が低下することなどが明らかとなった。

キーワード: 杭支持フーチング, 偏心荷重, 破壊形式, 曲げ耐力

1. はじめに

著者らは既報¹⁾において,フーチング平面の中 心に鉛直荷重を受ける 4 本杭支持独立フーチン グの曲げ耐力について実験的に検討した。その 中で,スラブ有効せい d と杭心と柱表面を通る 断面との距離1の比 d/l が 2.0 以上となる場合, フーチングの曲げ耐力は日本建築学会鉄筋コン クリート構造計算規準²⁾(以下, RC 規準)に準 じて求められる計算値を下回り,その度合いは d/l の値が大きいものほど顕著であることを示し た。また,その場合の曲げ耐力推定式も提示し ーチングについて破壊実験を行なった。なお, 本実験では鉛直荷重をフーチング平面の中心に 対して偏心させて作用させ,この鉛直荷重作用 位置(以下,偏心距離)を柱幅の範囲内で変え て実験し,フーチングの破壊性状及び耐力性状 に及ぼすその影響について検討した。

2. 実験の概要

2.1 試験体及び使用材料

試験体一覧を表-1に,試験体の形状及び配 筋例を図-1に示す。実験で考慮した変数は,

た。しかし,地震時には 鉛直力だけではなく,柱 脚から曲げモーメントも 伝達されることから,そ のような荷重下でのフー チングの諸性状について も明らかにしておく必要 があると考える。

そこで本報では,鉛直 力と曲げモーメントを受 ける杭支持独立フーチン グの破壊性状に関する基 礎的資料を得ることを目 的として,d/lが2.0以上 となる4本杭支持独立フ

No.	試験体記号	偏心	スラブ厚	柱幅	d/l	スラブ配筋	柱上面
		距離	(有効せいd)	r			$C_x \times C_y$
		e(mm)	(mm)	(mm)			(mm×mm
1	B-30-25-e0	0		250	2.50	5-D10@170	250×250
2	B-30-25-e4	40	300				290×250
3	B-30-25-e8	80	(250)				330×250
4	B-30-25-e12	120					370×250
5	B-35-25-e0	0		250	3.00	6-D10@130	250×250
6	B-35-25-e4	40	350				290×250
7	B-35-25-e8	80	(300)				330×250
8	B-35-25-e12	120					370×250
9	В-30-30-е0	0					300×300
10	B-30-30-e4	40	300	300	3.33	5-D10@170	340×300
11	В-30-30-е8	80	(250)				380×300
12	B-30-30-e12	120					420×300
13	B-35-30-e0	0					300×300
14	B-35-30-e4	40	350	300	4.00	6-D10@130	340×300
15	В-35-30-е8	80	(300)				380×300
16	B-35-30-e12	120					420×300

表-1 試験体一覧

*1 室蘭工業大学 工学部建設システム工学科助手 博士(工学) (正会員)

図-1 試験体の形状及び配筋例

スラブ厚 (300, 350mm), 柱幅 (250, 300mm) 及び偏心距離 (0, 40, 80, 120mm) であり, 試 験体数はこれらの変数を組み合せた, **表**-1に 示す 16 体である。このほか, スラブ平面 900mm ×900mm, 杭間隔 450mm 及び杭径 150mm は全 試験体で同一である。なお, 偏心荷重を作用さ せるために偏心距離に応じて, 柱上面の平面形 状を**表**-1に示す寸法とした。試験体記号は B の後にスラブ厚, 柱幅, 偏心距離の順に記して 付してある。スラブの鉄筋量は偏心のない試験 体について, 曲げ耐力計算値¹⁾がせん断耐力計算 値³⁾より小さくなるように定めた。本実験では, 荷重を偏心させた方向(以下, 偏心方向) と平 行な方向の鉄筋を下側に配しており, **表**-1に 示す有効せいは二方向での平均値を表している。

使用した鉄筋の力学的特性を表-2に、コン クリートの圧縮強度試験結果を表-3に掲げた。 2.2 載荷及び計測方法

図-2に載荷装置を示す。本実験では, 偏心 荷重を作用させるためアムスラー型圧縮試験機 の中心に対して試験体を偏心距離だけずらして セットし, 鉛直方向に単調漸増加力を行なった。 同時に, フーチング底面の鉛直方向変位をその

鉄筋の力学的特性 表-2 降伏点 断面積 張 断 引 破 応力度 強 てド 径 (公称) 度 伸 (mm^2) (N/mm^2) (N/mm^2) (%) D10 71.3 362 503 28.9 偏心距離 e アムスラー試験機ヘッド 試験機の 試験体の 中心 中心 試験体 円 形 載荷板 **ロ**-ラ 球座 球座受け ドヤル 載荷梁 半円柱形載荷板 連装油圧 アムスラー試験機ベッド 側面 図-2 載荷装置

対角線上5ヶ所で最小目盛り1/100mmのダイヤ ルゲージにより計測した。後述するフーチング 底面中央点のたわみは,基準となる杭支点の変 位をその両側の変位計測値を直線補完して求め, この値を中央点の計測値から差し引いて算出し た。また,図-1に示す位置(a~f)にひずみゲ ージを対に貼付しスラブ筋のひずみを計測した。

3. 実験結果及び考察

3.1 亀裂及び破壊状況

写真-1に最終亀裂状況の一例を示す。写真 はフーチングの底面及び側面を展開して示した ものであり、写真中、破線の○印は杭支点、同 じく□印は柱型投影部、●印は加力中心点をそ れぞれ表す。

フーチングのプロポーション(スラブ厚,柱 幅)が異なっても偏心距離が同じであれば,フ ーチング底面の亀裂発生状況に大きな違いは見 られず,次のようであった。e=0mm とした試験 体では,**写真-1(a)**に見られるように底面の亀 裂は各対辺の中央を結ぶ十字形 に近い分布となり,最大荷重の 直前ではこの亀裂の開口が顕著 に見られた。e=40mm 及び 80mm とした試験体でも、写真-1(b) 及び(c)に見られるように底面 の亀裂は十字形に近い分布とな ったが、偏心方向と直交する方 向の亀裂は、フーチングの辺に 平行ではなく加力中心点を通っ て対辺の中央付近を結ぶように 発生した(写真-1(b), (c)の アの亀裂)。最大荷重の直前では これらの亀裂の開口が観察され たが、反力の小さい 2 支点間に 生じた亀裂は殆ど開かなかった。 また,反力の大きい杭支点を囲 むように隣接する辺の中央を結 ぶ亀裂の発生も見られた(写真 -1(b), (c)のイの亀裂)。 e=120mm とした試験体では,

B-35-25-e12(No.8)を除き反力の小さい 2 支点間 に亀裂の発生は見られず,写真-1(d)に見られ るように最大荷重の直前には反力の大きい杭支 点を囲むように発生した亀裂の開口が顕著であ った。以上のように、偏心荷重を受けるフーチ ングの破壊断面は RC 規準で応力算定断面とし ている柱表面を通る断面とは必ずしも一致して いるとは言えない。なお、試験体 No.2, 7~9, 12~14 及び 16 では、最大荷重時あるいはそこか ら少し荷重が低下した段階で、柱隅角部と杭支 点の間でせん断破壊が生じフーチングの隅角部 が欠け落ちる形で破壊した(写真-2参照)が, そのほかのものでは危険防止のためそのような 破壊が生じる前に除荷した。

3.2 荷重-たわみ関係

図-3に荷重とフーチング底面中央点のたわ みの関係を示す。図中,〇印は曲げ降伏点を, △印は最大荷重点を表している。なお、最終的 にせん断亀裂が発生した試験体では、いずれも

写真-1 最終亀裂状況

その時点でたわみの計測が不可能となった。ま た,本報でも既報¹⁾と同様にフーチングの曲げ降 伏を荷重-たわみ関係から判定するものとし, たわみが急激に増加し始める点を曲げ降伏と定 義する。

図-3に示すように, 偏心距離 e=0mm 及び 40mm とした試験体は、○印を付した点以降、荷 重が上昇するとともにたわみも急激に増加して おり,いずれも曲げ降伏していると言える。e=80 mm とした試験体のうち, B-30-25-e8(No.3)の荷 重-たわみ関係には曲げ降伏点が確認できるが,

B-35-25-e8(No.7)及び B-35-30-e8(No.15) のそれには、降伏現象は見られず、最大 荷重時でのたわみは小さい。また、これ らは最大荷重後に載荷能力を喪失して おり、典型的なせん断破壊の性状を示し ている。B-30-30-e8(No.11)は最大荷重時 でのたわみは小さいものの、最大荷重後 も急激な荷重の低下は見られずたわみ も幾分増加していることから曲げ降伏 していると判定した。同様にして e=120mm とした試験体についても、 B-35-25-e12(No.8)はせん断破壊、その他 のものは曲げ降伏していると判定した。 上記のように判定した破壊形式を表-3に示す。

また, 表-3に示すたわみ量を見ると e=40mm 以下とした試験体では最大荷 重時のたわみに対する降伏時のそれの 比は8体の平均で4.7であった。これに 対し, e=80mm 以上としたものでは降伏後, 最大

荷重に達するまでの変形量は小さく、曲げ降伏

前にせん断破壊しているものも見られる。

3.3 スラブ筋のひずみ

図-4はB-30-30-e4(No.10),図-5はB-30-30 -e12(No.12)について、フーチング中央断面で計 測した鉄筋ひずみを断面内のひずみ分布として 示したものである。両図の(a)は図-1に示す直 交方向の断面,同じく(b)は偏心方向の断面につ いて,降伏荷重時でのひずみを示している。

まず,直交方向断面について見ると,図-4 及び図-5の(a)に示すように,降伏荷重時には 断面端部(aとc)の鉄筋ひずみは降伏ひずみに 達しているが,中央部(b)の鉄筋ひずみはそれ より小さくなっている。これは,中央部ではひ ずみ計測位置と亀裂発生位置が異なっていたこ とによるものと考えられる。次に,偏心方向断 面について見ると,偏心距離が短いものでは図 -4(b)に見られるように,断面中央部(e)や 反力の小さい側の端部(f)でも鉄筋ひずみはあ る程度大きな値となっている。これに対して, 偏心距離の長いものでは図-5(b)に見られる ように,反力の大きい側の断面端部(d)の鉄筋 ひずみだけが大きな値を示し,そのほかの位置 の鉄筋ひずみは非常に小さい値のままである。

なお,曲げ降伏前にせん断破壊したと判定し た試験体 No.7,8及び15の3体では最大荷重時 においても鉄筋ひずみが降伏ひずみに達した箇 所は見られなかった。

3.4 終局耐力

表-3に降伏荷重,最大荷重実験値及び計算 値を示す。曲げ耐力計算値は,RC規準に準じて 求めた値と偏心のないものについては著者らの 推定式¹⁾による値も掲げた。また,表中()内 の値は計算値に対する実験値の比を表している。 計算式については,その概略を**表-3**の下に掲 げた。

	*********************	d/1	実験値						世代型も計算は	
NI.			コンクリート	、 降伏		最大		破壊	曲り順力計昇値	
NO.	 訊 陳 仲 記 方	u/1	圧縮強度	荷重	たわみ	荷重	たわみ	形式*1	RC規準方式*2	著者ら*3
			(N/mm^2)	(kN)	(mm)	(kN)	(mm)		(kN)	(kN)
1	B-30-25-e0	2.50	38.3	592.6	0.48	665.6	1.82	В	640.4 (0.93)	530.1 (1.12)
2	B-30-25-e4		38.3	591.6	0.47	649.2	2.06	B→S	543.7 (1.09)	
3	B-30-25-e8		38.3	487.1	0.13	559.9	2.17	В	472.4 (1.03)	
4	B-30-25-e12		38.3	468.8	0.22	468.8	0.22	В	417.6 (1.12)	
5	B-35-25-e0	3.00	32.0	766.1	0.34	840.6	1.81	В	920.5 (0.83)	708.8 (1.08)
6	B-35-25-e4		32.0	753.2	0.35	764.7	2.31	В	781.6 (0.96)	
7	B-35-25-e8		32.0	—	_	677.7	0.25	S	679.1 -	
8	B-35-25-e12		32.0			620.0	0.27	S	600.4 -	
9	B-30-30-e0		36.1	668.7	0.35	847.2	1.90	B→S	853.4 (0.78)	638.1 (1.05)
10	B-30-30-e4	2 22	36.1	638.9	0.39	690.3	1.15	В	724.6 (0.88)	
11	В-30-30-е8	5.55	32.0	538.9	0.22	538.9	0.22	В	628.8 (0.86)	
12	B-30-30-e12		32.0	541.6	0.29	549.7	0.40	B→S	555.9 (0.97)	
13	B-35-30-e0		38.3	934.0	0.53	1080.6	1.79	B→S	1229.5 (0.76)	827.0 (1.13)
14	B-35-30-e4	1 00	38.3	915.3	0.35	1050.7	1.98	B→S	1043.9 (0.88)	
15	B-35-30-e8	+.00	36.1	_	_	898.2	0.38	S	906.5 -	
16	B-35-30-e12		36.1	676.6	0.20	781.9	0.95	B→S	801.4 (0.84)	

表-3 実験値及び計算値との比較

*1 破壊形式 B:曲げ破壊, B→S:曲げ降伏後の隅角せん断破壊, S:隅角せん断破壊

*2 RC 規準方式²⁾
$$P_{cal} = \frac{l_p \cdot a_t \cdot f_y \cdot j}{(0.5l_p + e)l}$$
 ここに、 $j = d - \frac{a_t \cdot f_y}{1.7f_c \cdot B}$
*3 著者ら¹⁾ $P_{cal} = \frac{4a_t \cdot f_y \cdot d}{(l_p - \alpha \cdot r)}$ ここに、 $l_p / d \leq 1.5 \text{ Obs}$, $\alpha = 0.75$
 $1.5 < l_p / d \leq 2.5 \text{ Obs}$, $\alpha = 0.75 + 0.25(l_p / d - 1.5)$

 l_p :杭間隔, a_t :一方向の鉄筋の全断面積, f_y :鉄筋の降伏点応力度,e:偏心距離,l:柱表面と杭心との距離 d:スラブ有効せい, f_c :コンクリートの圧縮強度,B:スラブ幅,r:柱幅

図-6は偏心距離に拘らずいずれも曲げ降伏 が確認された B-30-25(No.1~4)及び B-30-30 (No.9~12)について、降伏荷重実験値と偏心距離 の関係を示したものであり、図中の値は偏心の ないものに対する比で表している。図-6より, 偏心距離が長くなると比の値は小さくなってい るが, e=0mm と 40mm での比の値の差, 及び e=80mm と 120mm での比の値の差は小さく、比 の値は e=40mm と 80mm の間で大きく変化して いる。したがって、曲げ耐力は偏心距離に比例 して低下するのではなく,本実験の範囲では e=40mm と 80mm の間に耐力が大きく低下する 点が存在するものと推察される。また, B-35-25 及び B-35-30 でも偏心のないものの降伏荷重実 験値に対する e=40mm としたもののそれの比は いずれも 0.98 であり, e=40mm とした場合の耐 力低下は極僅かであると言える。

次に計算値について見ると、偏心のない試験 体に対しては、本実験でも著者らの推定式によ る値は実験値と非常によい対応を示しているこ と、RC規準による値は実験値を上回り、d/lの値 が大きいものほど計算値に対する実験値の比が 小さくなっていることが確認できる。また、偏 心のある試験体に対する RC規準による値は、偏 心距離が長くなると計算値に対する実験値の比 は大きくなる傾向があるものの、d/lの値が小さ い試験体 No.2~No.4の3体を除きいずれも 1.0を 下回っている。

4. まとめ

本報では、スラブ厚及び柱幅を変えた4本杭 支持独立フーチングについて、それぞれ鉛直荷 重の作用位置(偏心距離)を変化させて破壊実 験を行い、以下のことが明らかとなった。

- (1) 偏心荷重を作用させた場合,降伏以降に大 きく開口する亀裂の位置は RC 規準の応力 算定断面と異なる。
- (2) 偏心距離が長い、即ちフーチングに作用する鉛直力に対して曲げモーメントの割合が大きいと、降伏後の変形能力が小さく、曲げ降伏前にせん断破壊する場合がある。
- (3) 偏心距離が長くなると曲げ耐力は低下する 傾向があり、ある偏心距離(本実験では 40mm と 80mmの間)を境に耐力が大きく低 下することが確認された。
- (4) RC 規準に準じて求めた偏心荷重を受けるフ ーチングの曲げ耐力は、d/l の値によっては 実験値を上回る場合がある。

謝辞

本研究は,平成16年度科学研究費補助金(若 手研究(B),課題番号:15760415,研究代表者: 鈴木邦康)により行なった。

参考文献

- 大築和夫,鈴木邦康:4本杭支持独立フーチングの曲げ耐力に関する実験的研究,日本建築学会構造系論文集,第482号,pp.93-102, 1996.4
- 日本建築学会:鉄筋コンクリート構造計算規 準・同解説,日本建築学会,pp.242-265,1999
- 3) 鈴木邦康・大築和夫:4本杭支持独立フーチングのせん断耐力に関する実験的研究,日本 建築学会構造系論文集,第548号,pp.123-130, 2001.10