論文 RC造建物に硬化型復元力特性を有するエネルギー吸収デバイスを 設置した場合の有効性

佐藤 朋成^{*1}·堀 則男^{*2}·井上 範夫^{*3}

要旨:本デバイスは,中小地震時にはエネルギー吸収デバイスであるダンパーによって建物 全体の応答を低減し,大地震時にはダンパーのエネルギー吸収に加えて,リミッターの変形 制御により建物およびダンパーの過大な損傷を避けることを目的としている。本研究では, このデバイスをRC造建物に設置した場合の有効性を示す。 キーワード:粘弾性ダンパー,リミッター,硬化型復元力特性,ピロティ

1. はじめに

近年,動的外乱による構造物の応答を低減さ せる有効な技術である制振構造の研究が進めら れてきている。このような背景の下,筆者らは, 新たな制振デバイスとして硬化型復元力特性を 有するエネルギー吸収デバイスの提案および研 究を行ってきた¹⁾。

本デバイスは,中小地震時にはエネルギー吸 収デバイスとして用いたダンパーにより建物全 体の応答を低減し,大地震時にはダンパーのエ ネルギー吸収に加えて変形制御機構(以下リミ ッター)の作動により,建物全体の剛性が増加 することで層間変形を抑え,建物およびダンパ ーの過大な損傷を防ぐことを目指す。ただし, リミッター作動時には剛性が高くなることで応 答加速度や応答せん断力が大きくなるので,リ ミッター作動時の変形や剛性と入力地震動のレ ベルや特性の関係を検討する必要がある。

本研究は,このデバイスをピロティを有する RC 造建物に設置した場合の有効性を明らかに することを目的とする。

- 2. 解析条件
- 2.1 建物モデル 検討対象建物を図 - 1 に示す。これは, 純ラ

ーメンとして設計された 4 層モデル建物²⁾の 2 階から 4 階部分は剛体と仮定してピロティ型建 物に変更したものである。この建物を,全質量 と1階部分の復元力特性によって1 質点系にモ デル化したものを解析に用いる。また,骨組の みの粘性減衰定数は,瞬間剛性比例で2%とする。 図-2に骨組の復元力特性を示す。

図-2 骨組の復元力特性

*1 東北大学大学院 工学研究科 都市・建築学専攻 (正会員) *2 東北大学大学院助手 工学研究科 都市・建築学専攻 工博 (正会員) *3 東北大学大学院教授 工学研究科 都市・建築学専攻 工博 (正会員) 検討建物は,以下の4種類を対象とする。 (A)骨組のみ(弾性周期:0.31s)

(B)ブレース設置

(C)ダンパー設置(骨組にダンパーを設置)

(D)リミッター設置(骨組にダンパーとリミッターを設置)

2.2 ブレース・支持部材

ブレースは,一般的に耐震補強に用いられる ような H 鋼を用い,図 - 1 に示すように建物に 4set 設置する。この際にブレースは座屈止めによ って座屈はしないものと仮定し,降伏耐力は H 鋼の圧縮・引張降伏強度で決まるものとする。

ダンパー設置の場合には,ダンパーとして用 いる粘弾性体を,この鉄骨ブレースを支持部材 として図-3に示すように設置する。

この支持部材は,リミッター設置の場合には, リミッター作動前はダンパーの取り付け部材と して作用し,リミッター作動後は耐震補強材と して作用する。よって支持部材の剛性が,粘弾 性ダンパーの効き具合や耐震補強材としての効 果に大きく影響すると考えられる。そこで,表 - 1に示す 3 種類の部材を支持部材として用い た場合について検討を行う。

表 - 1 検討ブレース・支持部材(1set)

断面寸法 (mm)	水平剛性(kN/m)	せん断降伏耐力 (kN)
$\text{H-}300 \times 300 \times 15 \times 15$	446935	3946
$\text{H-}250 \times 250 \times 9 \times 14$	305627	2698
$\text{H-}175 \times 175 \times 7.5 \times 11$	169789	1499

2.3 粘弾性ダンパー

粘弾性ダンパーは,微小な変形時から機能を 発揮し,安定した楕円形の履歴ループを描くア クリル系粘弾性材料を対象とする。図 - 4 に粘 弾性ダンパーの基本構造および履歴挙動を示す。

図 - 4 粘弾性ダンパーの基本構造と履歴挙動

粘弾性ダンパーは,互いに平行な2枚の板の 相対的な平行移動に伴う粘弾性体のせん断変形 により履歴面積を伴う抵抗力を発揮して振動エ ネルギーを吸収する。既往の研究³⁾より,粘弾性 ダンパーの力学特性は,粘弾性体のせん断面積S とその厚さdの形状比として表せる粘弾性体量 S/dにほぼ比例する。また,振動数に依存して力 学特性が変化する特徴があるため,解析モデル として,振動数依存性を概ね再現できる図-5 に示すような4要素モデルを用いる¹⁾。

図 - 5 粘弾性ダンパーの抵抗モデル(1set)

建物モデルに設置する粘弾性体量⁴⁾は,図-6 に示す粘弾性体量と建物の初期剛性に対する粘 性減衰定数の関係を参照に,表-2に示す3通 りについて検討することとし,粘弾性体の層数 によって減衰を調節する。また,粘弾性体の許 容せん断ひずみは300%とする。1例として, B-typeにおける各パラメータを図-5に示す。

Туре	S(mm ²)	d(mm)	層数	設置数	S/d(mm)	付加減衰(%)
A-type			3		$1.2{\rm x}10^5$	3.0
B-type	500×300	15	6	4	$2.4{\rm x}10^5$	$4.5 \thicksim 5.5$
C-type			9		$3.6{\rm x}10^5$	$5.5 \thicksim 7.5$

表 - 2 粘弾性体の設置量

2.4 リミッター

リミッター設置の場合には,図-3の状態か ら変形が進むことで,支持部材がリミッターと 接触し,ブレース設置の状態となる。そこで, 支持部材とリミッターの接触時の衝撃を緩和す るため,図-7に示す履歴特性¹⁾を有するゴム製 のクッション材を用いる。クッション材サイズ は受圧面積 194mm×194mm,厚さ 24mm とする。

図 - 7 クッション材の履歴モデル(1set)

2.5 Gap

本研究では,リミッターが作動しブレース設置の状態になるまでのダンパー部分の変形のストロークを Gap と称することとする。

Gap の大きさは,建物の変形が塑性率1(層間 変形:28.3mm)となる時にリミッターが作動す るような値として Gap=28.0mm,中地震時にも作 動する値として Gap=16.0mm,その中間の値とし て Gap=22.0mm の3 通りを設定する。

2.6 入力地震動

入力地震動は告示で規定された設計用応答ス ペクトルに対応して作成した模擬地震動を用い る。入力レベルは極めて稀に起こる地震動とし, 地盤は第二種地盤を仮定して,告示に示す地盤 増幅を考慮した。位相特性は一様乱数とし,時 刻歴包絡関数は Jennings 型を用いた。これらの 設定によって得られた模擬地震動を大地震と設 定する。時刻歴波形を図-8に,加速度応答ス ペクトルを図 - 9 に示す。ここで,主要動が 8 秒の模擬地震動を長波,3秒のものを短波とする。

3 . 解析手法

本デバイスを用いた構造物の 1 質点系モデル を図 - 10 のように設定し運動方程式を導く^{3),5)}。 ただし,方程式を導く際,ダンパーの抵抗モ デルは一般化 Maxwell model (*k*=1~3)³⁾とし, 係数の変換により4要素モデルとして用いる。

全体変形 x は , 支持部材変形 x_b とダンパー変 形 x_d の和となる。また ,ダンパー変形 x_d は , k 番 目の Maxwell Model のばね変形 $_k x_k$ とダッシュ ポット変形 $_k x_c$ の和となる。

$$x = x_b + x_d = x_b + {}_k x_k + {}_k x_c \tag{1}$$

k 番目の Maxwell Model の抵抗力_kQ , リミ
 ッター抵抗力 L ,支持部材抵抗力 P は ,(2) ,(3) ,
 (4)式となる。ここで , _kK_d 及び_kC_d は , k 番目の

Maxwell Model のばねとダッシュポットを表す。

$${}_{k}Q = {}_{k}K_{d} \cdot {}_{k}x_{k} = {}_{k}C_{d} \cdot {}_{k}\dot{x}_{c}$$
⁽²⁾

$$L = K_L \cdot x_d \tag{3}$$

$$P = K_b \cdot x_b = L + \sum_{k} Q \tag{4}$$

速度 *x* を用いて(1)式を書き換え,(2),(3),(4) 式を代入すると,*k* 番目の Maxwell model につい て(5),(6)式が得られる。

$$\dot{x}_{n} = \frac{\dot{P}_{n}}{K_{b}} + \frac{\dot{L}_{n}}{K_{L}} = \frac{{}_{k}\dot{Q}_{n}}{{}_{k}K_{d}} + \frac{{}_{k}Q_{n}}{{}_{k}C_{d}} + \frac{\dot{P}_{n}}{K_{b}}$$
(5)

$$\dot{x}_{n+1} = \frac{\dot{P}_{n+1}}{K_b} + \frac{\dot{L}_{n+1}}{K_L} = \frac{{}_k \dot{Q}_{n+1}}{{}_k K_d} + \frac{{}_k Q_{n+1}}{{}_k C_d} + \frac{\dot{P}_{n+1}}{K_b}$$
(6)

 $_{k}Q$, *L*, *P* がそれぞれ刻み時間 Δt 内で線形的 に変化すると仮定する。

$${}_{k}Q_{n+1} = {}_{k}Q_{n} + ({}_{k}\dot{Q}_{n+1} + {}_{k}\dot{Q}_{n})/2 \cdot \Delta t \tag{7}$$

$$L_{n+1} = L_n + (\dot{L}_{n+1} + \dot{L}_n) / 2 \cdot \Delta t$$
(8)

$$P_{n+1} = P_n + (\dot{P}_{n+1} + \dot{P}_n)/2 \cdot \Delta t \tag{9}$$

(7)~(9)式を用いて(5)式+(6)式を_kQ_{n+1}, L_{n+1}, P_{n+1}について解くと(10)~(12)式が得られる。 _kQ_{n+1} = _kα{($\dot{x}_{n+1} + \dot{x}_n$) - A(P_{n+1} - P_n)}+ _k $\beta \cdot _kQ_n$ (10) L_{n+1} = D{($\dot{x}_{n+1} + \dot{x}_n$) - A(P_{n+1} - P_n)}+ L_n (11)

$$P_{n+1} = B(\dot{x}_{n+1} + \dot{x}_n) + ABP_n + C(L_n + \sum_{k} \beta \cdot Q_n)$$
(12)
tate U,

$${}_{k}\alpha = \frac{{}_{k}K_{d} \cdot {}_{k}C_{d} \cdot \Delta t}{2{}_{k}C_{d} + {}_{k}K_{d} \cdot \Delta t}, \quad {}_{k}\beta = \frac{2{}_{k}C_{d} - {}_{k}K_{d} \cdot \Delta t}{2{}_{k}C_{d} + {}_{k}K_{d} \cdot \Delta t}, \quad A = \frac{2}{K_{b} \cdot \Delta t}$$
$$B = \frac{D + \sum_{k}\alpha}{1 + AD + A\sum_{k}\alpha}, \quad C = \frac{1}{1 + AD + A\sum_{k}\alpha}, \quad D = \frac{K_{L} \cdot \Delta t}{2}$$

以上より,本デバイスを設置した建物モデルの運動方程式(13)は,骨組モデルの運動方程式に (12)式をダンパー部分の抵抗力として考慮した ものとなる。ここで, x₀は地動加速度を表す。

 $M\ddot{x}_{n+1} + C_f \dot{x}_{n+1} + K_f x_{n+1} + P_{n+1} = -M\dot{x}_{0n+1}$ (13)

4. 解析結果

4.1 履歴ループ

本デバイスの地震応答性状を確認するために, 1 例として,B-type,支持部材 H-250×250×14 ×9の大地震時の履歴ループを図-11に示す。

骨組のみの場合には過大に変形が進んでしま っている。また,ブレース設置では変形は抑え られているが加速度が大きくなってしまう。こ れに対し,ダンパー設置では,ダンパーのエネ ルギー吸収により応答が低減されている。さら にリミッター設置では,リミッター作動前には ダンパーによるエネルギー吸収がみられ,リミ ッター作動時には,全体剛性が増加し変形を抑 えることができるが,加速度は増加してしまう。

4.2 最大応答値比較

作成した模擬地震動2波を入力波として用い, 50%入力の中地震と,100%入力の大地震に対し て最大応答値の比較を行った。

(1)中地震に対する応答

中地震時の最大応答値の比較を図 - 12 に示す。 骨組のみの場合は,塑性率約3程度にまで変 形が進んでしまう。ブレース設置の場合には、 層間変形を塑性率 1 以下に抑えることができる が,応答加速度はダンパー設置の場合の2倍以 上に増加してしまい,実際には支持部材が降伏 してしまう。これに対して,ダンパー設置の場 合には,減衰が付加されることにより,建物の 層間変形を塑性率 1 以下に抑えることができ, ダンパー変形も許容変形以下で収まり,支持部 材も降伏しない。この時,粘弾性体量が多いほ ど層間変形を抑えることができるが,応答加速 度に関してはあまり違いはない。リミッター設 置の場合,粘弾性体量が少ない A-type の Gap=16.0mm では,中地震時にもリミッターが作 動してしまうが,クッション材の効果によりほ とんど応答に影響は見られない。

(2)大地震に対する応答

大地震時の最大応答値の比較を図 - 13 に示す。

ブレース設置の場合は,支持部材がすでに中 地震時に降伏しているので参考値とする。ダン パー設置の場合, C-type のように粘弾性体量を 多く設置することで,ダンパー変形を許容変形 以下に抑え,層間変形を塑性率2程度にまで低 減することができる。しかし, C-type よりも粘 弾性体量の少ない A,B-type では,ダンパー変形 が許容変形を超えてしまう。これに対しリミッ ター設置の場合では,粘弾性体量がC-typeの1/3 である A-type の場合でも, Gap を中地震時の最 大ダンパー変形から設定した 16.0mm と小さく することで,ダンパー変形を許容変形以下に収 め,層間変形を塑性率2程度にまで低減できる。 さらに,支持部材としてH-300×300×15×15の ような大きな断面の部材を用いることで,支持 部材抵抗力を降伏値以下にできる。また,粘弾 性体量が C-type の 2/3 である B-type の場合では, Gap を 16.0mm~28.0mm 程度とすることで, ダ ンパー変形を許容変形以下に抑え,層間変形を 塑性率2程度にまで低減できる。さらに,支持

部材として H-250×250×9×14 以上の断面の部 材を用いることで,支持部材は降伏しない。

また,長波と短波では,ダンパー設置では短 波のほうが層間変形が大きいが,リミッター設 置では変形を矯正することであまり違いはない。

以上の結果より, リミッターを設置すること によって, 粘弾性体量が少ない場合でも, ダン パー設置の粘弾性体量を多くした場合と同程度 にまで層間変形を抑えられることが分かった。

5. まとめ

ピロティを有する RC 造建物に対して,硬化型 復元力特性を有するエネルギー吸収デバイスの 有効性を検討した。以下に結論を示す。

(1)中地震に対する応答

ダンパー設置の場合は,ダンパーのエネルギ ー吸収により,層間変形を低減することができ, 応答加速度も小さい。また,ダンパー変形も許 容変形以下に収まり,支持部材も降伏しない。 リミッター設置の粘弾性体量が少なく Gap が小 さい場合には,リミッターが作動してしまうが, クッション材の効果によって応答に影響は無い。 (2)大地震に対する応答

リミッターを設置することによって,粘弾性 体量が少ない場合でも,ダンパー設置の粘弾性 体量を多くした場合と同程度にまで層間変形を 抑えることができる。さらに,ダンパー変形を 許容変形以下に収めることができ,支持部材も 降伏させないことが可能となる。

参考文献

- 康在完,堀則男,井上範夫,川股重也:硬化型復元 力特性をもつエネルギー吸収デバイスを設置した RC 造建物の地震応答性状,コンクリート工学年次 論文集, Vol.25, No.2, pp.1171~1176,2003.7
- 国土交通省建築研究所,(財)日本建築センター:
 日米共同構造実験研究「高知能建築構造システムの 開発」平成12年報告書,2001.3
- 高橋雄司,曽田五月也:一般化マックスウェルモデ ルにより模擬される粘弾性ダンパーを有する構造 物の応答解析方法,日本建築学会構造系論文集, No.511,pp.85~91,1998.9
- 4) 笠井和彦,寺本道彦,大熊潔,所健:粘弾性体の温度・振動数・振幅依存を考慮した構成則(その1) 線形領域における温度・振動数依存のモデル化,日本建築学会構造系論文集,No.543,pp.77~86,2001.5
- 5) 畑田朋彦,小堀鐸二,石田雅利,丹羽直幹:Maxwell 形モデルを含む振動系の応答解析法(その1)定式 化と数値シミュレーション,日本建築学会大会学術 講演梗概集B,pp.645~646,1994.9