論文 正負交番荷重を受ける SRC 柱で生じる H 形鋼の局部座屈性状

内藤 英樹*1·白濱 永才*2·高田 真人*3·鈴木 基行*4

要旨:SRC 柱の正負交番載荷実験において,H 形鋼の割合が多い SRC 柱では,かぶりコン クリートの剥落や軸方向鉄筋の座屈後も優れた塑性変形能を有するが,H 形鋼の局部座屈が 生じた後に鋼材が破断することで脆性的に耐力を失った。そこで,H 形鋼の局部座屈に着目 した靭性能評価法を構築するための基礎的研究として,FEM 解析により,SRC 柱の正負交 番載荷実験において生じた H 形鋼の局部座屈性状の再現を試みた。また,SRC 構造では,H 形鋼に囲まれるコアコンクリートがウェブの面外変形とフランジの内側への変形を拘束す ることで,H 形鋼の座屈抵抗性が大きく向上することを解析的に示した。

キーワード:SRC構造,正負交番載荷実験,H形鋼の局部座屈,有限変位解析

1. はじめに

兵庫県南部地震以降,鉄骨鉄筋コンクリート (以下,SRC)構造やコンクリート充填鋼管など, 鋼とコンクリートの合成構造の優れた靭性能が 着目されており,これらの土木構造物への適用 例が増加している。特に,合成構造では,コン クリートの拘束により鉄骨の局部座屈形状が変 化し,鋼構造と比較して座屈抵抗性が大きく向 上するために,優れた塑性変形能を有すること が実験および解析により報告されている^{1),2)}。し かし,現行の耐震設計規準³⁾では,部材降伏後に おける鉄骨の局部座屈に着目した靭性能評価法 は規定されていない。

一方で,著者ら⁴⁾は,充腹形の SRC 柱の正負 交番載荷実験を行い,H 形鋼の割合が多い SRC 柱では,かぶりコンクリートの剥落や軸方向鉄 筋の座屈後でも,H 形鋼により安定した復元力 特性が得られることを明らかにしてきた。しか し,正負交番荷重を受ける SRC 柱では,H 形鋼 の局部座屈が生じた後に,鋼材が破断すること で脆性的に耐力を失った。著者ら^{4),5)}は,これま でに地震後の修復性の観点から,かぶりコンク リートの剥落に対応した SRC 柱の靱性能評価法

を提案しているが、一方で、構造全体系の崩壊 に対する照査などでは、このような H 形鋼の座 屈や破断に対応した靭性能評価法も必要となる。

そこで、H 形鋼の局部座屈に着目した SRC 柱 の靭性能評価法を構築するための基礎的研究と して、FEM 解析により、SRC 柱の正負交番載荷 実験において生じた H 形鋼の局部座屈性状の再 現を試みる。また、裸鉄骨と SRC 構造における H 形鋼の座屈解析の結果を比較することで、SRC 構造で生じる H 形鋼の局部座屈性状と座屈抵抗 性の向上効果を検討する。

供試体 番号	H形鋼		軸方向鉄筋		帯鉄筋			曲げ
	$\begin{array}{c}H_s \times B_s \times t_w \times t_f \overset{\otimes 1}{}\\(\text{mm})\end{array}$	フランジ 幅厚比	径·本数	鉄筋比 (%)	径·間隔 (mm)	面積比 ^{※2} (%)	跃官 鉄筋比 ^{**3}	せん断 耐力比
No.1S	300×200×10×15	6.7	D16×10	0.79	D10@100	0.29	4.4	2.1
No.2S	300×80×10×15	2.7	D25×8	1.62	D10@100	0.29	1.3	2.0
No.3S	300×250×10×15	8.3	D13×8	0.41	D10@100	0.29	10.1	2.0
No.4S	300×250×10×15	8.3	D13×8	0.41	D6@300	0.04	10.1	1.6

表-1 供試体諸元

※1 H 形鋼の断面高さ×H 形鋼の断面幅×ウェブ厚さ×フランジ厚さ

※2 帯鉄筋の面積比:(帯鉄筋の部材単位長さ当たりの総断面幅)/(断面幅×部材単位長さ)

※3 鉄骨鉄筋比: (H 形鋼の総断面積) / (軸方向鉄筋の総断面積)

2. SRC 柱の正負交番載荷実験

2.1 実験概要

供試体概略図と供試体諸元を図-1 および表 -1に示す。なお、これらの供試体のうち No.1S の結果は、参考文献 4)にて報告している。4 体の 供試体のせん断スパンと断面寸法を同一として、 鉄道構造物等設計標準³⁾を用いて算定される曲 げ耐力とせん断耐力がそれぞれ同程度となるよ うに鉄骨鉄筋比を変化させた 3 体の SRC 供試体 (No.1S~No.3S)を作製した。これらの供試体に用 いられる H 形鋼は、フランジ厚さを一定として、 幅厚比 2.7~8.3 の範囲でフランジ幅のみを変化 させている。また、No.3S の帯鉄筋量を大幅に低 減させた No.4S を作製した。これらの供試体で は、フーチング下面に設置した鋼製ベースプレ ートに H 形鋼を溶接している。

載荷は,降伏変位 δ_y の整数倍を載荷ステップ として 3 回の交番載荷を行い,軸力は載荷しな い。降伏変位 δ_y は,柱基部から 50mm 位置の軸 方向鉄筋と H 形鋼に貼付したひずみゲージの一 方が,鋼材の引張試験結果から得られた降伏ひ ずみに達する変位とした。

鉄骨,鉄筋,およびコンクリートの材料試験 結果を**表-2**に示す。

2.2 損傷状況と荷重-変位関係

正負交番載荷実験から得られた各供試体の荷 重-変位関係を図-2に示す。

フランジ幅厚比 6.7 の No.1S では,水平変位 72.9mm(±9*δ*_y)の交番載荷にて,軸方向鉄筋のは らみ出しに伴いかぶりコンクリートが大きく剥

表-2 材料試験結果

供試体	コンクリート	鋼材の降伏強度(MPa)				
番号	強度(MPa)	軸方向鉄筋	帯鉄筋	H形鋼		
No.1S	25.3	442	457	376		
No.2S	24.4	436	390	293		
No.3S	25.2	409	390	293		
No.4S	28.6	409	317	293		

落する様子(以下,かぶり剥落)が確認された。そ の後,写真-1に示すように,かぶり剥落区間に おいて軸方向鉄筋の破断が生じ、水平変位 143 mm(±15δ_v)の交番載荷において H 形鋼のフラン ジ外側のコンクリートが剥落すると同時に H 形 鋼が局部座屈する様子が目視により確認された。 写真-1に示す実験結果では、実験終了までの交 番載荷においてフランジの片側のみに座屈変形 が生じており、また、H 形鋼フランジの破断が 生じないことから、局部座屈以降も図-2に示す 荷重-変位関係では耐力低下や復元力特性に大 きな変化はなく、紡錘型の履歴ループ形状を維 持した¹⁾。なお、本実験では、かぶり剥落後の交 番載荷において,軸方向鉄筋の破断などが載荷 面に対して対称に生じないことから、耐力低下 に伴い供試体が載荷直角方向に大きく傾いた。 このため, No.1S や No.3S では、載荷パターンを 変更して, H 形鋼フランジの局部座屈以降は数 回程度の交番載荷しか行っていない。

フランジ幅厚比 2.7 の軸方向鉄筋の割合が多い No.2S では,水平変位 55.8mm($\pm 9\delta_y$)の交番載荷でかぶり剥落が生じた。このとき,荷重一変位関係にて大幅な耐力低下が生じ,エネルギー吸収能の小さい履歴ループへと変化した。かぶ

※かぶり剥落点とH形鋼の座屈点は、かぶり剥落とH形鋼の局部座屈が目視で確認された それぞれの載荷ステップにおける正載荷での最大変位点を示す。

り剥落後の交番載荷では、供試体が載荷直角方 向に大きく傾いたことから載荷を終了した。な お、実験終了時には、H 形鋼のフランジ外側の コンクリートが全て剥落していたが、H 形鋼の 局部座屈は生じていないことを確認した。

フランジ幅厚比 8.3 の H 形鋼の割合が多い No.3S では,水平変位 45.3mm(±9*δ*_y)の交番載荷 においてかぶり剥落が確認されたが,軸方向鉄 筋の割合が小さいことから軸方向鉄筋の座屈や 破断が耐力低下や履歴ループ形状に与える影響 は小さい。しかし,水平変位 123mm(±24*δ*_y)の交 番載荷において H 形鋼フランジの局部座屈が生 じ,その後の 10 回程度の交番載荷により,局部 座屈の発生箇所から鋼材が破断することで脆性 的に耐力を失った。

No.3S の帯鉄筋量を低減した No.4S では, No.3S と同様の損傷過程および荷重-変位関係 を示している。No.4S では,水平変位 86mm(± $17\delta_y$)の交番載荷において H 形鋼のフランジ外側 のコンクリートが全て剥落したが,水平変位

写真-1 H 形鋼の局部座屈 (No.1S)

106mm($\pm 21\delta_y$)の交番載荷まで H 形鋼フランジ の局部座屈は生じないことが確認された。また, No.1S と同様に,実験終了まで H 形鋼が破断し なかったことから,優れた靭性能を維持した。

以上より,H 形鋼の割合が多い SRC 柱では, かぶり剥落後も H 形鋼による曲げ耐力を有して おり,安定した復元力特性を示すことが実験的 に確認された。また,H 形鋼フランジの局部座 屈が生じた後も、数回程度の交番載荷では、水 平耐力や復元力特性の変化は顕著に見られなか った。しかし、No.3Sでは、H形鋼フランジの局 部座屈が生じた後の10回程度の交番載荷におい て、鋼材が破断することで脆性的に耐力を失う 結果となった。このような実験結果を見る限り、 安全側かつ精度良いSRC柱の靱性能評価法を提 示するためには、H 形鋼フランジの局部座屈発 生点を終局と定義することが妥当であると考え られる。そこで、以降では、FEM 解析により、 正負交番載荷実験で生じた H 形鋼の局部座屈性 状の再現を試み、SRC 構造における H 形鋼の局 部座屈性状と座屈抵抗性の向上効果を検討する。

3. SRC 構造における座屈性状の検討

3.1 解析モデル

汎用有限要素解析プログラム MARC を用いた H 形鋼の座屈解析を行う。図-3に示すように、 フーチング面から上部のH形鋼を4節点シェル 要素によりモデル化する。H 形鋼の基部は下端 固定とし、鋼材の応力-ひずみ関係は完全弾塑 性を仮定した。SRC 構造におけるコンクリート の効果は, H 形鋼の変形を拘束することでのみ 考慮する。H 形鋼ウェブは、面外への変形を拘 束する。また, 図-3 (1)では, 柱基部のかぶり 剥落区間に圧縮剛性(コンクリートの初期剛性を 仮定)のみを与えたトラス要素(以下,圧縮トラス 要素)を配置することで、フランジの内側への変 形のみを拘束する。また、(1)の区間以外のかぶ りコンクリートが存在する区間では,H 形鋼の フランジ外側のコンクリートが座屈を抑制する ことから、図-3(2)に示すように、圧縮剛性と 引張剛性(ともにコンクリートの初期剛性を仮 定)を与えた弾性トラス要素を配置することでフ ランジの内側と外側への変形を拘束した。この ような圧縮トラス要素による柱基部のモデル化 は、柱基部のかぶり剥落区間において、H 形鋼 のフランジ外側のコンクリートによる座屈抑制 効果を無視している。実験時での目視による判 断では, H 形鋼のフランジ外側のコンクリート

による座屈抑制効果の有無を判断することは極めて困難であるが,最も幅厚比が大きい No.4S において,H 形鋼フランジの座屈発生時にフラ ンジ外側のコンクリートが全て剥落していたこ とから,表-1に示す供試体に対しては,柱基部 のかぶり剥落区間に圧縮トラス要素を配置した 図-3のモデル化は妥当であると考えられる。

なお,かぶり剥落点以降では,H 形鋼とコン クリートの付着による SRC 断面の平面保持則は 成り立たないことから⁴⁾,図-3のH 形鋼の座屈 解析を行う際には,コンクリートの曲げ圧縮力 によりH 形鋼に生じる断面力の影響は無視した。 また,有限変位解析を行うため,H 形鋼の天端 位置に載荷直角方向の微小な荷重を加えた。

3.2 正負交番載荷実験との比較

表-1に示す No.1S~No.4SのH形鋼の座屈解 析を行った。ここでは、フランジ幅厚比をパラ メータとしたH形鋼の座屈発生点や座屈区間の 変化を検討するため、実際の正負交番載荷実験 での載荷パターンとは異なり、*δ*_y=10mmとする 載荷ステップ毎に1回の交番載荷とした。なお、 *δ*_yの値や定変位毎の繰返し回数を変化させた場 合にも、解析結果に大きな影響がないことを確 認している。解析における座屈発生点は、フラ ンジの端部と中央部(ウェブーフランジ接合部) の変位が分岐する載荷ステップでの正側の最大 変位点と定義した。実験結果の座屈発生点は、 目視で座屈が確認されたときの天端変位とし、 実験と解析での座屈区間は、フランジ端部の変

供試体 番号	解析結果			実験結果				
	塑性化区間 (mm)	座屈区間 (mm)	天端変位 ^{注)} (mm)	塑性化区間 (mm)	かぶり剥落 区間(mm)	座屈区間 (mm)	天端変位 (mm)	
No.1S	300	200	104.1 (14.1)	250	300	200	143	
No.2S	300			250	500			
No.3S	300	200	93.8 (23.8)	350	200	100	123	
No.4S	300	200	93.8 (23.8)	350	200	200	106	

表-3 H形鋼の座屈解析結果

注) 括弧内はフーチングからの鋼材の伸び出しの影響 (かぶり剥落時の鉛直変位計による計測値)

No.3S では,鉛直変位計の値に大きな誤差が含まれたことから,No.4S の実験結果を用いた。

形形状から判断した。

なお,SRC 柱の正負交番載荷実験との比較を 行う際には,実験時におけるフーチングからの 鋼材の伸び出しの影響を考慮する必要がある。 本実験では,図-1に示す柱基部に設置した鉛直 変位計を用いて鋼材の伸び出しによる柱基部の 回転角を計測したが,かぶり剥落点以降は変位 計を撤去している。このため,かぶり剥落点で の計測値を解析結果に付加することで,正負交 番載荷実験との比較を行う³⁾。

実験結果と解析結果の比較を表-3に示す。表 -3には、実験時に H 形鋼フランジに貼付した ひずみゲージの値が降伏ひずみに達した区間も 併せて示す。ここで,ひずみゲージは H 形鋼の 柱高さ方向に 100mm 間隔で貼付しているため, 実際の塑性化区間は,表-3よりも若干大きくな る。なお,著者ら^{4),5)}は,かぶり厚さや帯鉄筋の 配筋などを考慮した軸方向鉄筋の座屈解析を用 いて SRC 柱のかぶり剥落区間を解析的に評価す る手法を提示しているが、ここでは、図-3のモ デル化の妥当性を検証するため,実験時に観察 されたかぶり剥落区間に対して,図-3(1)の圧 縮トラス要素を配置した。No.2Sの解析結果は, 実験結果と同様に,H形鋼の局部座屈は生じず, また, No.1S, No.3S, および No.4S の解析結果は, 天端変位を過小評価する傾向が見られたが、実 験時の H 形鋼の局部座屈性状を概ね再現できた。 実験結果との比較では、1)かぶり剥落時に計測さ れた変位計の値を用いてフーチングからの鋼材 の伸び出しの影響を考慮している,2)実験結果で のH 形鋼の局部座屈発生点は、フランジ外側の

コンクリートが剥落することで目視により確認 されることから,数サイクル程度の誤差が含ま れることが予想される,などの理由により,解 析結果は天端変位を過小評価したと考えられる。

解析による座屈区間は、いずれも 200mm となった。帯鉄筋の配置が異なる No.3S と No.4S では、 圧縮トラス要素の配置をともに 200mm 区間とす るため、座屈発生点や座屈区間に差異は生じなかった。また、H 形鋼の座屈区間は、フランジ幅に 応じて定まることから⁶、フランジ幅が小さい No.1S では、かぶり剥落区間よりも小さい座屈区 間が得られた。

3.3 SRC 構造における座屈性状の検討

図-3のモデル化により,正負交番荷重を受け る SRC 柱で生じる H 形鋼の局部座屈性状が概ね 再現できた。そこで、フランジ幅厚比が最も大 きい No.4S の H 形鋼に対して, 裸鉄骨の座屈解 析と表-3の結果とを比較することで, SRC 構 造における H 形鋼の局部座屈性状と座屈抵抗性 の向上効果を考察する。これらの座屈解析によ る荷重-変位関係を図-4に示す。また、座屈発 生点での座屈変形は微小であることから、SRC 構造と裸鉄骨でそれぞれ座屈発生点から 1 ステ ップ後と2ステップ後における変形図を図-5に 示す。裸鉄骨では、ウェブーフランジ接合部を 支点として,フランジの両端がそれぞれ内側と 外側に変形する座屈性状を示した。さらに、座 屈発生点から2ステップ以降では、フランジ内 側への変形が大きくなり, ウェブの座屈を伴う ことで, H 形鋼全体のねじれ変形が生じる。一 方, SRC 構造では, コンクリートの存在により,

フランジの端部がいずれも外側に変形する座屈 形状へと変化した。図-5の変形図から、両者の 座屈区間は200~250mmであり、同程度となる。 このことから、SRC構造では、フランジの内側 への変形が拘束されることで、図-4の荷重一変 位関係に示されるように、H 形鋼の座屈抵抗性 が大きく向上し、その結果、優れた靭性能とエ ネルギー吸収能が得られた²⁾。なお、別途行った SRC構造の解析結果より、かぶり剥落区間を 200mmから100mmに変化させた場合でも、荷重 一変位関係に示される座屈発生点に大きな差異 は生じなかった。このことから、図-3のモデル 化において、かぶり剥落区間の設定は、座屈抵 抗性に大きく影響しないことが確認された。

4. まとめ

本研究では,H 形鋼の局部座屈に着目した靭 性能評価法を構築するため,FEM 解析により, SRC 柱で生じる H 形鋼の局部座屈性状を検討し た。その結果,1)H 形鋼の局部座屈が生じる大変 形域では,H 形鋼のフランジ外側のコンクリー トが大きく損傷していることから,その座屈抑 制効果は無視できること,2)SRC 構造では,コ ンクリートが H 形鋼ウェブの面外変形とフラン ジの内側への変形を拘束することで,裸鉄骨と は異なる座屈形状となり,座屈抵抗性が大きく 向上すること,を示した。

なお、軸方向鉄筋の割合が多い SRC 柱では、 軸方向鉄筋の座屈により大幅に耐力が低下する

図-5 H形鋼の局部座屈形状

ことから、今後は、H 形鋼の局部座屈に着目し た簡便な靭性能評価法を提示するとともに、SRC 構造に使用される鉄骨と鉄筋の割合に応じた終 局点の設定方法についても検討する必要がある。

参考文献

- 鈴木敏郎,元結正次郎,内山政彦:一定軸力 下において繰り返し曲げを受ける鉄骨コン クリート部材の履歴特性および塑性変形能 に関する研究,日本建築学会構造系論文集, No.490, pp.207-214, 1996.12
- 2) 鈴木敏郎,小河利行,五十嵐規矩夫,末岡利之: 構成板要素の局部座屈を拘束した H 形鋼曲げ 部材の塑性変形性状に関する研究,日本建築 学会構造系論文集, No.474, pp.181-190, 1995.8
- 鉄道総合技術研究所:鉄道構造物等設計標準・ 同解説 鋼とコンクリートの複合構造,1998.
- 内藤英樹,清水真介,青木茂夫,鈴木基行:部 材損傷に着目した RC および SRC 柱の靭性能 評価法に関する実験的研究,コンクリート工 学年次論文集, Vol.26, No.2, pp.205-210, 2004.7
- 5) 秋山充良,内藤英樹,鈴木基行:軸方向鉄筋の座屈発生点に対応した終局曲率の簡易算定法および RC 柱と SRC 柱の靭性能評価への適用,土木学会論文集,No.725/V-58,pp.113-129,2003.2
- 加藤勉,福知保長:板要素の変形能力について、日本建築学会論文報告集,No.147, pp.19-25, 1968.5