論文 PVA-ECC 梁部材のせん断性状評価

清水 克将^{*1}·氏家 隆博^{*2}·金久保 利之^{*3}·閑田 徹志^{*4}

要旨: PVA-ECC(PVA 繊維を使用した Engineered Cementitious Composites)を用いた梁部材のせん断性状を把握するため、繊維混入率と肋筋量を変動因子とした梁試験体の曲げせん断実験及び PVA-ECC の一軸引張試験を行った。その結果、著者らが提案した PVA-ECC 部材のせん断強度算定式の妥当性が認められた。また、予亀裂を与えた PVA-ECC の一面せん断実験を行い、せん断強度と引張強度との比較検討を行った。 キーワード:梁、曲げ、せん断、一面せん断

1. はじめに

近年,一軸引張応力下で高い靭性を有する Engineered Cementitious Composites¹⁾ (以下, ECC) に代表される高靭性セメント複合材料を構造要 素に使用するために、鉄筋補強された ECC 部材 の構造実験が行われている。これらは、エネル ギー吸収部材等への適用を目的としているため, 曲げ破壊型の実験結果が多く、せん断設計法構 築のためのバックデータが不足しているのが現 状である。そこで著者らは、PVA 繊維を使用し た ECC (以下 PVA-ECC) に着目し、鉄筋補強さ れた梁の曲げせん断実験を行い、せん断強度算 定式を提案した²⁾。本稿では、データの更なる蓄 積を目的とし,より広範囲の肋筋量に対してせ ん断破壊型の試験体の加力実験を行うと共に, 曲げ降伏先行後せん断破壊する試験体の性状に ついても検討した。また,先のせん断強度算定

式の提案では, ECC の引張強度に等しいせん断 強度を累加する形としたが,これについての実 験的な検討はされていなかった。本稿では,予 亀裂を与えた ECC の一面せん断実験を行い,梁 部材におけるひび割れ面での ECC のせん断強度 に関する検討を行った。

2. 梁部材の曲げせん断実験

2.1 試験体・加力計測方法

試験体の形状は昨年報告したもの²⁾と同様,断 面が180×280mm, せん断スパン比が1.5 である。 実験因子は,肋筋比(0.6%,0.89%),及び繊維 混入率 V_f(1.0%,1.5%,2.0%)である。肋筋比 0.60%の試験体形状及び配筋を図-1 に示す。 PVA-ECC には,繊維長12mm,繊維径0.04mm, 破断強度1600MPaのPVA 繊維を用いた。曲げ降 伏先行型試験体 F シリーズの主筋には SD390 を

^{*1} 筑波大学大学院 (正会員)

*4 鹿島建設(株) 技術研究所建築生産グループ上席研究員 Ph.D.(正会員)

^{*2} 太平ホーム(株)(元筑波大学学生)(正会員)

^{*3} 筑波大学 機能工学系講師 博士 (工学) (正会員)

	PVA-ECC				配筋			
試験体名	信用維維	混入率	昆入率 圧縮強度		十故	肋筋		
	汉门城州	$V_f(\%)$	(MPa)	(GPa)	土肋	配筋	$p_{w}(\%)$	
MT-30						2-D4@47	0.30	
MT-60	(モル	タル)	61.0	28.6	SHD685	2-D6@59	0.60	
MT-89						2-D6@40	0.89	
PVA10-60				20.2	SHD685	2-D6@59	0.60	
PVA10-89	PVA	1.0	49.9			2-D6@40	0.89	
PVA10-89F					SD390	2-D6@40	0.89	
PVA15-60					SHD685	2-D6@59	0.60	
PVA15-89		1.5	50.3	19.4		2-D6@40	0.89	
PVA15-89F					SD390	2-D6@40	0.89	
PVA20-60					SUD695	2-D6@59	0.60	
PVA20-89		2.0 45.8	19.5	5110005	2-D6@40	0.89		
PVA20-89F				SD390	2-D6@40	0.89		

表-1 梁試験体一覧

用いた。試験体一覧及び 100 φ × 200mm シリン ダーによる圧縮試験結果を**表−1** に示す。ここで ECC の配合は**表−2** に示す V_F=2.0%の PVA-ECC

(PVA20)の配合計画を元に、繊維のみを減じて 他の V_f の ECC を配合した。また、比較のために PVA-ECC の繊維を除いたモルタル (MT) 試験体 も作製した。鉄筋の引張試験結果を**表**-2 に示す。

加力方法は大野式の曲げせん断一方向載荷³⁾ とし,部材角 1/20rad まで加力した後除荷した。 2.2 実験結果の概要

全ての試験体において,部材角 1/800rad まで に曲げひび割れが発生し,1/200rad 程度でせん断 ひび割れが順次発生した。実験結果一覧を**表-4** に示す。なお,曲げ降伏先行型試験体 F シリー ズは,1/20rad においても荷重は増加中であった。 せん断破壊した試験体においては,繊維混入率

表-2 配合計画

	水結合	砂結合	V_{f}	空気量
	材比	材比	(%)	(%)
PVA20	0.42	0.77	2.0	10

表-3 鉄筋の引張試験結果

	降伏	弾性	降伏	破断
名称	強度	係数	歪	伸び
	(MPa)	(GPa)	(µ)	(%)
D13 ^{*1}	438	175	2510	18.3
D13 ^{*2}	711	178	3850	10.8
D4 ^{*3}	358	193	1850	15.4
D6 ^{*4}	334	173	1940	17.9

*1:Fシリーズ用主筋 *2:Fシリーズ以外の試験体用主筋 *3: p_w =0.30%試験体用肋筋 *4: p_w =0.60%, 0.89%試験体用肋筋

の増加,及び肋筋量の増加に伴い最大荷重時の せん断力及び部材角が増加傾向にある。

同一肋筋比の試験体において MT 試験体に対

表-4 梁実験結果一覧

	ひび割れ発生荷重(kN)		最大荷重時		限界変形時*1		主たるせん	破壊
試験体名	曲げ	せん断	せん断力 (kN)	部材角 (×10 ⁻³ rad)	せん断力 (kN)	部材角 (×10 ⁻³ rad)	断ひび割れ 角度 ^{*2} (゜)	形式 *3
MT-30	9.7	96.3	177.7	13.7	—	—	29.1	S
MT-60	23.4	67.8	230.7	15.5	—	—	28.7	S
MT-89	50.2	70.3	277.1	18.3	—	_	35.1	S
PVA10-60	18.1	128.9	262.7	14.8	(210.2)	44.0	33.7	S
PVA10-89	25.1	130.2	317.9	19.0	(254.3)	47.5	34.6	S
PVA10-89F	26.1	94.9	259.0^{*4}	50.7 ^{*4}	—	—	36.5	F
PVA15-60	22.4	150.7	295.5	16.9	(236.4)	31.5	27.0	S
PVA15-89	39.5	143.9	343.9	23.3	—	—	34.1	S
PVA15-89F	31.0	166.7	269.7^{*4}	49.9 ^{*4}	_	_	31.0	F
PVA20-60	15.0	146.5	310.2	18.8	(248.2)	23.9	30.3	S
PVA20-89	19.1	163.4	341.2	19.2	(272.9)	43.1	34.9	S
PVA20-89F	24.7	178.1	272.4^{*4}	50.1 ^{*4}	—	—	36.1	F

*1:最大荷重の80%まで荷重低下したとき *2:主だったせん断ひび割れの部材軸に対する角度

*3:Sはせん断破壊,Fは曲げ降伏 *4:除荷時前(1/20)の荷重

する最大荷重の増加量は、PVA10 試験体が 32.0kN (p_w =0.60%), 40.8kN (p_w =0.89%), 同様 に PVA15 試験体が 64.8kN, 66.8kN, PVA20 試験 体が 79.5kN, 64.1kN であった。この増加量を梁 幅 (180mm) と主筋中心間距離 (185mm) で除 して応力に換算すると, それぞれ順に PVA10 試 験体で 0.96MPa, 1.23MPa, PVA15 試験体で 1.95MPa, 2.01MPa, PVA20 試験体で 2.39MPa, 1.92MPa であった。

2.3 せん断カー部材角関係

全試験体のせん断力-部材角関係を図-2 に 示す。図中には曲げひび割れ発生時,せん断ひ び割れ発生時,主筋降伏時,肋筋降伏時,最大 荷重時,限界変形時を示した。全ての試験体に おいて肋筋の降伏が認められた。最大荷重後に 急激な荷重低下を起こしている試験体について は、ひび割れの拡大、変形の局所化に対応して いる。Fシリーズにおいては主筋が降伏し、その 後肋筋の降伏で剛性は低下したものの、荷重が 漸増した。MT試験体では最大荷重以降、顕著な 荷重低下は認められない。

3. PVA-ECC 部材のせん断強度評価法の検証 3.1 一軸引張試験

著者らが昨年提案したせん断強度評価法²⁾の 検証を行なう。まず,梁試験体と同バッチで作 製した角柱くびれ型試験体を用いた一軸引張試 験結果を報告する。一軸引張試験の試験体およ び加力計測方法は,文献 4)に示す「筑波大・鹿 島式」引張試験と同一で,100×100×400mm 角 柱の中央100mm 区間に幅 60mm のくびれ部を設 け,端部支持条件をピンー固定として引張試験

表-5 一軸引張試験結果

試験体名		初期ひび割れ時		引張強度時		1/2 引張強度時	
		引張応力	引張歪	引張応力	引張歪	引張応力	引張歪
		(MPa)	(%)	(MPa)	(%)	(MPa)	(%)
DVA 10	平均值	1.47	0.014	2.09	0.21	(1.05)	0.32
r vAlu	変動係数(%)	33.2	52.3	28.7	37.7		44.9
DVA 15	平均值	1.98	0.015	2.99	0.58	(1.50)	0.71
r vAIJ	変動係数(%)	9.9	41.8	6.3	18.9		28.5
DVA 20	平均值	2.45	0.019	3.76	0.90	(1.88)	0.90
1 vA20	変動係数(%)	19.0	4.6	5.6	24.4	_	24.3

を行うものである。引張応力-盃関係を図-3に、 一軸引張試験結果を表-5に示す。繊維混入率の 違いによる明確な差が認められた。

3.2 せん断強度評価法の検証

せん断強度評価算定式を以下に示す。

$$V_{u} = b \cdot j_{t} \left(p_{w} \cdot \sigma_{wy} \cdot \cot \phi + \sigma_{max}^{ECC} \right) + \tan \theta (1 - \beta) b \cdot D \cdot v \cdot \sigma_{R} / 2$$
(1)

$$\tan \theta = \sqrt{\left(L/D\right)^2 + 1} - L/D \tag{2}$$

$$\beta = \frac{\left(1 + \cot^2 \phi\right) \left(p_w \cdot \sigma_{wy} + \sigma_{max}^{ECC} / \cot \phi\right)}{\nu \cdot \sigma_B} \quad (3)$$

$$\leq 1$$

$$\cot \phi = \min\{2, j_t / (D \tan \theta)\}$$

ここで,

*j*_t : 主筋中心間距離

 p_w : 肋筋比

 σ_{wv} : 肋筋降伏強度

 σ_{max}^{ECC} :引張強度

- **D** : 部材せい
- *v* : **PVA-ECC** の圧縮強度の有効係数
- σ_B : PVA-ECC の圧縮強度

L :内法長さ

 $v = 3.68 \sigma_B^{-0.333} (\sigma_B \mathcal{O} 単位は kgf/cm^2)$ (5) この評価法の概要は、PVA-ECC 部材のひび割 れ面におけるせん断強度を引張強度と同等とし て、日本建築学会A法に累加したものである。 せん断強度評価法の検証結果を図-4に示す。曲 げ強度計算値はPVA-ECCの応力-盃関係として 圧縮側を圧縮強度及び圧縮強度時歪を頂点とす る放物線モデル、引張側は引張強度を降伏応力 とし1/2 引張強度時歪を終局歪とする完全弾塑 性モデルとして、断面曲げ解析により算出した。

図-4 せん断強度評価法の検証

図中の矢印は, 試験体 F シリーズの経験最大強 度をプロットしている為, 実際の最大耐力はこ れよりも大きいことを示している。前年実施試 験体分も含め,本提案式がせん断強度を良く模 擬していることが分かる。また,破壊形式の区 分も良い精度で評価できている。

(4)

4. 一面せん断実験

先に提案した梁部材のせん断強度算定式では, ECC の引張強度と等価なせん断強度を日本建築 学会 A 法に累加している。これは,部材中のせ ん断ひび割れ面において,ECC が引張強度と等 価なせん断応力を保持することを仮定している。 ECC のひび割れ面におけるせん断伝達機構は, 破壊力学的な検討⁵⁾や平板による純せん断加力⁶⁾ 等で検討されているが,直接的せん断実験が行 われた報告例はない。本稿では,あらかじめ引 張加力により予亀裂を導入した試験体に一面せ ん断加力を行い,ひび割れ面における ECC のせ ん断伝達の基本的性状の把握を試みた。

4.1 実験方法

形状及び加力・計測方法を図-5に示す。試験 体は梁試験体と同バッチの材料を用い、形状は 100×100×400mm の角柱試験体の中央部に深さ 30mm の切り欠きを設け、断面が 40×100mm で ある。加力方法は、ひび割れ面でのせん断伝達 機構を検討するため、まず一軸引張加力により 予亀裂を与えた後に一面せん断加力を行った。 一軸引張試験方法は、M12 ネジ棒を介してユニ バーサル試験機のヘッドチャックに端部支持条 件をピンー固定となるように設置し、静的載荷 した。目視によりひび割れが断面全体に発生し た時点で除荷し, その後, 一面せん断加力を行 った。変位計測は図-5に示すようにトラス状に 配した π型変位計によりひび割れ幅, せん断ず れ変位を計測した。ここで、ひび割れ幅 u 及び せん断ずれ変位 v は以下の式により算出した。

$$u = (\delta_1 + \delta_2)/2 \tag{6}$$

$$v = \frac{1}{70} \cdot \left(\frac{\sigma_3 - \frac{1}{122}}{2} \right) \tag{7}$$

ここで、δ₁、δ₂:上下のπ型変位計変位(mm)
 δ₃:斜めのπ型変位計変位(mm)
 4.2 実験結果

せん断カーせん断ずれ変位及びひび割れ幅関 係を図-6に、せん断加力後の写真(PVA20-SH3) を図-7に示す。荷重増加に伴い、せん断ずれ変 位及びひび割れ幅が増加し、最大荷重付近で急 激に変形が進展して破壊に至った。本実験は引 張加力によりひび割れを生じさせた後にせん断 加力を行うため、ひび割れが閉じて噛み合いが 生じていると推測される。また、引張加力時に おいて二次曲げの影響を多大に受けた試験体

(PVA20-SH1)では、適切にせん断加力が行え なかった。しかしその他の試験体においては、 切り欠き部にはほぼ直線状にひび割れが生じて おり(図-6)、またこのことは全9試験体中6 体が直線的ひび割れ分布を示したことからも、 有効にせん断加力が行えていると考えられる。

4.2 引張強度とせん断強度の関係

一面せん断実験結果一覧を表-6に,一軸引張 試験により得られた引張強度とせん断強度の関

図-6 せん断応カーせん断変位,ひび割れ幅関係

	引張	加力	せん断加力				
試驗休夕	経験最大	経験最大	最大荷重時				
アンジスアナイコ	応力	変位	せん断強度	ひび割れ幅	せん断変位		
	(MPa)	(mm)	(MPa)	(mm)	(mm)		
PVA10-SH1	1.90	0.137	2.32	0.032	0.065		
PVA10-SH2	1.75	0.169	5.29	0.199	0.152		
PVA10-SH3	2.08	0.134	4.37	0.151	0.569		
PVA15-SH1	2.39	0.104	5.33	0.228	0.273		
PVA15-SH2	2.63	0.223	6.61	0.213	0.190		
PVA15-SH3	3.23	0.162	7.76	0.215	0.585		
PVA20-SH1	4.03	0.261	*	*	*		
PVA20-SH2	2.99	0.129	7.37	0.157	0.201		
PVA20-SH3	2.91	0.091	6.28	0.117	0.501		

表-6 一面せん断試験結果

図一7 破壊例

* 有効にせん断加力が行えなかった

係を図-8に示す。引張強度に比べせん断強度が 2倍程度大きいが、コンクリートの圧縮強度と引 張強度の差のような違いはなく、応力レベルと しては同程度であるとみなせる。なお、今回の ような一面せん断加力の場合、ひび割れ面のか み合いによるせん断応力の増加分が大きいと考 えられるため、実際の部材中におけるひび割れ 面での挙動を模擬した一面せん断加力、すなわ ち、引張応力を与えた状態でのせん断加力を行 うことで、ひび割れ面でのせん断強度と引張強 度が同程度の値を示すものと考えられる。

図-8 引張強度とせん断強度の関係

5. まとめ

- (1) PVA-ECC 梁部材の曲げせん断実験を行った。 せん断強度評価算定式により, せん断強度を 精度良く評価できる。
- (2) PVA-ECC の一面せん断実験を行った。その 結果,ひび割れ面でのせん断強度は一軸引張 強度とほぼ同レベルの強度を有しているこ

とが分かった。

参考文献

- Li, V.C.: From Micromechanics to Structural Engineering - The Design of Cementitious Composites for Civil Engineering Applications, Journal of Structural Mechanics and Earthquake Eng., JSCE, Vol.10, No.2, pp.37-48, 1993
- 清水克将,金久保利之,閑田徹志,永井 覚: PVA-ECC 梁部材のせん断終局耐力評価,コ ンクリート工学年次論文集, Vol.26, No.2, pp.1537-1542, 2004.7
- 3) 大野和雄,横山和雄,久保田吉彦:新載荷法 による鉄筋コンクリート梁のせん断抵抗に ついて,日本建築学会研究報告,第30号, pp.1-4,1955
- 清水克将,金久保利之,閑田徹志,永井 覚: HPFRCCの一軸引張および曲げ性状に及ぼ す打設方向の影響,コンクリート工学年次論 文集, Vol.25, No.1, pp.281~286, 2003.7
- Kabele, P.: New Developments in Analytical Modeling of Mechanical Behavior of ECC, Journal of Advanced Concrete Technology, Vol.1, No.3, pp.253-264, 2003
- 金久保利之,諏訪田晴彦,福山 洋:高靭性 セメント系複合材料を用いたパネルの純せ ん断性状,日本建築学会大会学術講演梗概集 (東海), C-2 構造IV, pp.425-426, 2003.9