論文 各種セメント系人エバリア材料の溶脱特性の評価

山本 武志*1·広永 道彦*2

要旨:普通ポルトランドセメント(OPC),フライアッシュ混合セメント(FAC),そして低 熱ポルトランドセメント(LPC)を使用したブロック状の試験体を用い,拡散による溶脱変 質を加速させるために液交換頻度を高めた浸漬試験を行い,細孔構造の異なる各硬化体の変 質過程を評価した。浸漬前の水和物組織に形成される孔径 20~200nm 程度の毛細管空隙が Ca²⁺等の拡散経路として作用するため,CH 変質フロントの進行に大きな影響を及ぼすと推 察された。FAC使用時は,CHの消費と空隙充填による組織の緻密化をもたらすポゾラン反 応が生じるため,CH 変質フロントの進行速度が非常に低くなることが明らかになった。 キーワード:溶脱,人工バリア,変質,フライアッシュ,ポゾラン反応

1. はじめに

我が国の放射性廃棄物処分施設(低レベル放 射性廃棄物処分施設および TRU 廃棄物処分施 設)においては、廃棄物格納容器から地下水へ C¹⁴ 等の核種が移行する速度を抑制する機能が セメント系人工バリアに要求されている。処分 環境下では、バリアを構成するセメント水和物 から地下水に Ca²⁺, Si 等の諸イオンが溶脱し, 硬化体の多孔質化による核種移行抑止機能の低 下が懸念されている。セメント系人工バリアの 構築に際して長期耐久性の評価、すなわち変質 特性と変質領域の進行速度の評価が重要であり, 硬化体細孔構造の変化の過程を明らかにする必 要がある。現在構築されている人工バリアの基 本概念では廃棄体に接したセメント系材料の外 周に低透水性のベントナイト混合土が配置され るため、そのベントナイト系人工バリア内部の セメント系人工バリアは、拡散場に置かれると 考えられる。

本研究では基準材料として OPC を適用し, OPC に比べて CH 生成量が少ない LPC, そして ポゾラン反応による消費で CH 含有量がさらに 少なくなる FAC を用い,浸漬法による拡散場に おける溶脱の進行過程を解明することを目的と した。

2. 試験概要

2.1 試験体の準備

(1) 試験体の種類

OPC, LPC, FAC (JIS-I 種相当フライアッシュ を OPC に 30 質量%混合)の3 種類のセメントを 用い,ペースト硬化体およびモルタルを製造し た。硬化体中の細孔径分布が溶脱特性に及ぼす 影響を考察するために,水結合材比(W/B)を 40,60,80%の3 種類とした。そして,その各水 結合材比でペースト硬化体を製造すると共に, 豊浦産のケイ砂(旧モルタル試験用標準砂)を 用い,砂結合材比(S/B)を1.0,1.5,2.0とした モルタルを打設した。なお,練混ぜ水はイオン 交換水を用いた。

(2) 試験体の製造

ブリーディング水を硬化体中に取りこんだ状 態で硬化させるために,凝結時間を迎えるまで 一定時間毎に混練を繰り返す「練り返し作業」 を行った。なお,練り返し作業の合間は 30℃, 相対湿度 80%の湿空槽内に試料を静置した。

練り返しによる混練後にペーストおよびモル タルからブリーディング水が発生しないことを 確認し、φ10×20cmの樹脂製型枠に流し込み、 棒状バイブレータによる締固めを行った。

*1 (財)電力中央研究所 地球工学研究所 バックエンド研究センター主任研究員 (正会員) *2 (財)電力中央研究所 地球工学研究所 バックエンド研究センター上席研究員 (正会員) 打設後に 30℃, 相対湿度 90%以上の湿空養生 槽内で 24 時間静置した後に 50℃水中養生を 91 日間行った。なお,養生中に試料から溶脱する イオン量を抑制するために 2~3kg の OPC およ び LPC を約 10 1 の水に溶いて得られたセメント 上澄み液を養生液として用いた。

2.2 浸漬試験方法

(1) 試験体形状

養生後の各硬化体を小型のダイヤモンドカッ ターを用いて、20×20×20mmの立方体に切り出 した。なお、養生液による試料の変質の影響を 除去するために、 ϕ 10×20cmの硬化体中心部か ら試験体を切り出した。

(2) 浸漬条件

20×20×20mm の立方体に対して 2000ml の浸 漬水量(脱気処理を施したイオン交換水)とし, 蓋つきのポリプロピレン製容器内に各試験体を 浸漬した。試験体と浸漬水の間で生じるイオン 濃度勾配を維持するため,浸漬試験の開始後 82 週まで 4~5週間毎に浸漬水全量を交換する液交 換作業を実施した。なお,浸漬作業および液交 換作業は全て窒素ガスで充填したグローブボッ クス内で実施した。

2.3 分析方法

(1) 液相中の溶脱イオン濃度

浸漬水を全量交換する際にその一部を採取し, 固相から液相に溶脱した各種イオン濃度を分析 した。浸漬水を 0.20µm のメンブレンフィルタ ーを用いてろ過した原液を1N 塩酸酸性に調整 し,誘導プラズマ発光分析装置 (ICP)を用いて 溶存している元素組成を測定した。

(2) 変質領域の構成元素濃度分布

接水面の中央部を垂直にダイヤモンドカッタ ーで切断し、樹脂含浸により脆弱な変質領域を 補強した状態で粒径の異なるダイヤモンド粒子 を用いたスラリーにより順次研磨した。そして、 乾燥処理後に蒸着処理を施し、電子線マイクロ アナライザー(EPMA)により Ca, Si 等,各元 素の濃度分布を分析した。分析時の加速電圧, 試料電流を各々15kV,0.2μAとした。なお、接 水面で幅 2.5mm, 中心部方向に 5mm および 10mmの領域を分析領域とした。

(3) 細孔径分布および水和物相の評価

水銀圧入式ポロシメータ,粉末 X 線回折装置 (XRD, Cu-K_α),示差熱・熱重量同時測定装置 (TG/DTA, 10℃/分),²⁹Si-NMR-MAS を用いて 各試料の物理・化学的特性を評価した。浸漬開 始時の初期試料と共に浸漬期間 82 週間における 変質試料の表層部 3mmの領域を切断して得られ た変質部を分析対象とした。試料は,アセトン に約 12 時間浸漬した後に試料質量が一定となる まで真空ポンプによる乾燥処理を行った。

3. 試験結果

- 3.1 液相評価
 - (1) Ca²⁺溶脱量の経時変化
- セメント種類:同一の水結合材比では,FAC を使用したペーストの累積 Ca²⁺溶脱量は, OPC を使用した場合の約 30%に留まり,CH 含有量の低下と組織緻密化の効果が示唆さ れた(図-1)。
- ② 水結合材比: OPC と LPC を使用したペース トは、水結合材比が大きいほど Ca²⁺の累積溶 脱量が多くなる傾向を示した。しかし、FAC を使用したペーストでは、水結合材比を 40% とした場合に Ca²⁺の累積溶脱量が最も高ま った。これは、図-10に示すように水結合 材比 40%の FAC ペーストでは、孔径 100~1 ×10³nmの毛細管空隙が水結合材比 60%およ び 80%の場合に比べて多く形成され、比較的 高い拡散性を有するためと推察された。
- ③ 砂結合材比:モルタルの Ca²⁺溶脱速度および 82 週における累積溶脱量は、フライアッシュの混合の有無に関わらずペーストに比べ て減少した。また、骨材量を多くすると Ca²⁺ の溶脱速度が低下し、試料内部から浸漬水へ の拡散性が低下した(図-2)。

(2) Si 溶脱量の経時変化

Si 溶脱速度:拡散により硬化体から単位時間
 (週)当たりに溶脱する Si の量を溶脱速度

として評価した。FAC ペーストの Si 溶脱速 度は,浸漬開始直後からほぼ一定であり,浸 漬期間 40 週程度までは OPC および LPC よ りも溶脱速度は高まった(図-3)。OPC と LPC に比べて FAC ペーストの毛細管空隙径 は小さく(3.2(4)), CH 結晶粒間の拡散経路 の連結性が低いため,低拡散性の硬化体であ る。接水面から中心部に向かう CH 結晶粒の 溶解の連鎖性が低いため,浸漬水との濃度勾 配を緩衝するために CH よりも溶解度の低い C-S-H とポゾラン反応相の溶脱変質が早期 に開始したと考えられた。

② OPC における砂結合材比:モルタルの Si 溶 脱速度は,S/B によらずペーストに比べて 20%程度高まった。同試料における Ca²⁺溶脱 量が低下したことから,CH 変質フロント近 傍の CH から溶脱する Ca²⁺の拡散経路となる 毛細管空隙の連続性を骨材が低下させ,浸漬 水との濃度勾配の緩衝に向け,C-S-H の変質 開始時期が早まったと考えられた(図-4)。

- ③ FAC における砂結合材比:FAC 使用モルタ ルの Ca²⁺の溶脱速度の変化と同様に、骨材量 が多いほど Si 溶脱速度は低下し、OPC モル タルとは異なる傾向を示した。これは、FAC では OPC に比べて毛細管空隙径が小さく、 その空隙の低連続性を骨材がより低下させ たため、空隙壁面の C-S-H およびポゾラン反 応相から溶脱する Si 量の拡散性を低下させ たことによると推察された。
- 3.2 固相評価

(1) Ca 濃度分布

水結合材比を80%としたOPCおよびFAC使用 ペーストの浸漬期間 13 週における Ca 濃度分布 を図-5に示す。両試料に認められる赤色点は Ca 濃度が37%以上,Si 濃度が5%以下,そして Al 濃度が1.5%以下になる点であり,CHの結晶 粒を表していると判断した。この赤色点の粒径

(長径)の最大値を表-1に示す。OPC および
 LPC 使用ペーストでは水結合材比の増加と共に
 CH 結晶最大径が大きくなるが, FAC 使用ペース

トでは大きな差異が認められなかった。また, 同一水結合材比では,FAC 使用ペーストにおけ る CH 結晶最大粒径が最も小さくなった。そして, 図-5に示すように,フライアッシュを混合す ることで CH 結晶粒 (赤色点)間の距離が拡大し た。フライアッシュのセメント置換混合使用に より,初期 CH 生成量が低減し,さらにポゾラン 反応により CH が消費される影響と合わせ,フラ イアッシュ粒子の混在により CH 結晶粒が分散 する効果がもたらされた。

(2) CH 変質フロントの進行

本研究では、CH が消失した前線位置をCH 変 質フロントと称した。OPC 使用ペーストおよび モルタルにおける CH 変質フロント位置(図-5)の経時変化を各々図-6,図-7に示す。 浸漬期間 13,26,82 週の測定点に限られるが、 各水結合材比において経時的な CH 変質フロン ト位置は直線近似できた。水結合材比を40,60, 80%とした OPC 使用ペーストにおける CH 変質 フロントの進行速度は、各々0.018,0.074、

図

- 5 EPMA による Ca 濃度分布分析

(左: OPC ペースト-W/B=80%,右: FAC ペースト-W/B=80%, ←: CH 変質フロント位置を示す,上部が接水面,下部が 中心部,分析範囲 2.5×5mm)

表 - 1 CH 結晶最大粒径	(単位μm)
-----------------	--------

水結合材比	OPC	LPC	FAC
40%	100	100	60
60%	120	180	60
80%	140	280	80
NNN		_> >> >> +> (10 BB	

注) EPMA による評価(図-7),浸漬期間 13 週の中心 部(健全領域)における赤色点の直径,ただし,長方 形断面の場合は長手方向の長径を測定した。 0.111mm/週であった。また,水結合材比を 40, 60,80%とした LPC 使用ペーストでは各々0.027, 0.104,0.100mm/週,そして FAC 使用ペーストで は水結合材比によらず,0.0025mm/週であった。 OPC 使用モルタル (図-7) では浸漬期間 26 週 までの測定点に限られるが,砂結合材比に依存 せず,同一水結合材比であれば CH 変質フロント の進行速度がペーストとほぼ同等になった。ま た,LPC,FAC 使用時も OPC と同様に各ペース トと同等の CH 変質フロント進行速度になった。

(3) 水和物相の変化

XRD および TG-DTA による構成水和物相の変 化を評価した。分析対象領域は表層部 3mm とし たが,各試料の CH 変質フロント位置は表-2に 示すように異なった。水結合材比 80%の OPC 使 用ペーストの変質部では, CH, AFm, AFt は消 失したが, Katoite (C₃ASH₄)の含有量は増加す る傾向が認められた。水結合材比 80%の LPC 使 用ペーストの変質部でも CH の消失と Katoite の 増加傾向が認められたが, AFt が残存しており,

OPC と LPC では CH 変質フロント領域内の変質 状態が異なることが明らかになった。分析対象 試料に健全部が多く含まれる FAC 使用ペースト では,浸漬期間中に AFm の含有量が高まる傾向 が認められ,ポゾラン反応の進行と伴に AFm も 生成したと考えられた。

溶脱による変質に伴う C-S-H の構造変化を ²⁹Si-NMR スペクトルによる Si イオンの結合状態 の評価により調べた。なお、図中に示す ppm は ケミカルシフト値を表し、周波数を換算した単 位である。そして、Q⁰、Q¹、Q²、Q³は全て(SiO₄)⁴ を表し、各々単量体、端鎖、鎖中、鎖の分岐、 網状におけるシグナル強度を表し、通常のセメ ント水和物 C-S-H は、Q⁰、Q¹、Q²のみで構成さ れ、そのうちの Q⁰は未水和セメント粒子に由来 する。分析領域全てが CH 変質フロント内となる OPC-W/B80%-82 週変質試料(図-8) では、Q⁰

(未水和クリンカー) はほぼ発生せず, Q¹ に対 する Q²の比率の増加¹⁾ と共に Q³に相当する-90 ~-100ppm の範囲におけるケミカルシフトの発 生が認められた。C-S-H から Si に比べて Ca²⁺が 多く溶脱することで Si の結合相間に接点が多く 形成され, Si イオンの網目結合化 (Q³) を示す ケミカルシフトパターンを示したと推察された。

(4) 細孔径分布の変化

OPC および FAC 使用ペーストの初期試料の細 孔径分布(図-9,図-10)のうち,5~10nm にピークを有し,3~20nm の細孔径の範囲で細 孔率が高まるのは,SEM 像観察の結果から C-S-H のコロイド間およびポゾラン反応相の結 晶間に形成された微小細孔によると推察された。 また,孔径 20~200nm 程度の範囲における細孔 は C-S-H 等の各種水和物相の中に取込まれた練 混ぜ余剰水による毛細管空隙であると推察され た²⁾。モルタル初期試料のうち,水結合材比 40%-砂結合材比 2.0 では 20nm 以上の毛細管空隙が

表一2 浸着 82 週 0H 変質 ノロント位直	(mm)	置	ト位置	ント	101	変質フ	CH	调	82	浸清	- 2	表·
----------------------------	------	---	-----	----	-----	-----	----	---	----	----	-----	----

水結合材比	合材比 OPC LPC			
40%	2.4	3.5	0.6	
60%	6.9	10	0.6	
80%	10	10	0.6	

200nm 以上の粗大径側に分散したが,それ以外 のモルタルではペーストと同様の空隙構造にな る傾向が認められた。また,OPC 使用ペースト 初期試料の毛細管空隙径は,水結合材比の増加 (40,60,80%)に伴い増大(45,78,150nm) する傾向を示し,練混ぜ水量の増加は多孔質な 水和物相の組織形成をもたらした。

OPC および FAC 使用ペーストの初期試料に対 する浸漬期間 82 週における変質試料の細孔径分 布の変化を各々図-11,図-12に示す。FAC 使用ペーストでは変質領域が少ないため、2× 10³nm 以下の細孔率の微増傾向に留まったが、 OPC 使用ペーストの水結合材比を 40,60,80% とした各変質試料では、各々51,130,180nmの 孔径を基点として細孔率が急増した。そして、 その基点よりも孔径が僅かに小さい領域におい ては、いずれの試料においても細孔率が減少し

た。これは、毛細管空隙壁面の C-S-H の溶脱変 質に伴う空隙径の拡大によると推察された。

4. まとめ

拡散場を模擬した浸漬法による促進溶脱試験 を行い,以下の結果を得た。

- ① 初期の水和物組織に形成される孔径 20~200nm 程度の毛細管空隙量が多いほど,そしてその空隙径が大きいほどCH変質フロントの進行速度が高まる。溶脱の進行に伴い Ca²⁺等の拡散経路を形成する空隙壁面の C-S-Hが溶脱変質するため、空隙径は拡大する。
- ② モルタルにおけるCH変質フロント進行速度 はペーストと同程度であるが、Si 溶脱量の割 合は高まる。拡散経路を構成する毛細管空隙 の連続性が骨材により低下するため、CH 変 質フロント近傍のCHから溶脱するCa²⁺量が 抑制される。そして、浸漬水と硬化体間の濃 度勾配を緩衝するため、接水面近傍の溶解度 の低い C-S-H およびポゾラン反応相の溶脱

変質の開始が早まると推察された。

- ③ FACの系では、初期CH含有量の低減とCH 結晶粒の分散効果と合わせ、ポゾラン反応が 孔径20nm以上の毛細管空隙の充填を伴う組 織の緻密化をもたらすため、CH変質フロン トの進行速度が抑制されると考えられた。
- ④ Si に比べて Ca²⁺溶脱量が多い C-S-H の溶脱 変質により, C-S-H を構成する Si イオンの 結合度が高まり, 溶脱変質がより進行した状 態では Si イオンの網目結合が発生する。

参考文献

- 山本武志,広永道彦,芳賀和子,庭瀬一仁: セメント系人工バリア材料の長期性能評価 に関する各種溶脱試験法の適用性,コンクリ ート工学論文集, Vol.16, No.2, pp.23-35, 2005
- 山本武志,金津努:ポゾラン反応がもたらす 組織緻密化のメカニズムと強度発現に関す る考察,土木学会第60回年次学術講演会, 5-244, pp.487-488, 2005