論文 コンクリート用表面被覆材の欠陥が物質遮蔽性能に及ぼす影響

小倉 孝道*1·山下 寬生*1·下村 匠*2

要旨:表面被覆材のピンホールや浮き,剥がれ等の欠陥が物質遮蔽性能へ与える影響につい て実験的に検討するために,模擬欠陥を設けた供試体に電位差を与えてイオンを透過させる 通電試験を行った。ピンホール,剥がれなどの穴状の欠陥は表面被覆材の領域平均的な物質 遮蔽性を損なうことが明らかとなった。試験結果より,欠陥を含む被覆材の平均塩化物イオ ン拡散係数を導出し,比較,考察を行った。

キーワード:表面被覆材,欠陥,塩化物イオン拡散係数,物質遮蔽性能

1. はじめに

コンクリート構造物の劣化対策として,コン クリート表面を保護することによって塩化物イ オンや水分,酸素等の劣化因子の侵入を抑制す る工法が有効であると考えられる。コンクリー トの表面保護工法のひとつとして,エポキシ樹 脂等の樹脂をコンクリート表面に塗布,硬化さ せ,水分や塩分などの劣化因子のコンクリート 中への侵入を物理的に遮蔽する被膜をコンクリ ート表面に形成する工法がある。

表面被覆材を構造物の維持管理に合理的に取 り入れるために,試験方法の開発など,表面被 覆材による耐久性向上効果の定量化が試みられ ている¹⁾。著者らは,連続繊維シート接着工法の 物資遮蔽性能の評価に用いた通電試験と数値解 析を併用する方法³⁾を応用し,各種表面被覆材の 塩化物イオン拡散係数を評価した²⁾。その結果, いずれの表面被覆材も物質遮蔽効果はコンクリ ートに比べてはるかに大きく,構造物の実際的 な供用寿命の範囲内で問題となるほど腐食因子 の透過を許さないことが明らかとなった。

ただし、これは、実験室で得られた遮蔽性能 が実構造物でもそのまま実現され、その効果が 持続すると仮定した場合である。換言すると、 実構造物では施工時の初期欠陥や供用中の被覆 材の経年劣化が実質的に表面被覆材の効果を支 配する可能性がある。現状では、これらの欠陥 が表面被覆材の遮蔽効果に与える影響について 定量評価法がない。

本研究では、被覆材を適用したコンクリート 供試体に模擬欠陥を導入し、欠陥が物質遮蔽性 に及ぼす影響を通電試験により実験的に評価す る。次に、通電試験と拡散移動解析を併用する 方法²⁾により、欠陥の影響を領域平均化して含ん だ被覆材層の平均拡散係数を実験的に導出する。 さらにその平均拡散係数が、線形平均化モデル を用いて健全な被覆材の拡散係数と欠陥面積率 から予測できるかどうか検討する。

コンクリート供試体の通電による物質透過 試験

2.1 供試体

コンクリート供試体の配合を表-1に,供試 体の種類を表-2に示す。供試体は,中心にD10 鉄筋を1本埋め込んだコンクリート円柱供試体 とし、 φ10×20cmとφ15×20cmを用いる。表面被覆 材はエポキシ樹脂(比重 1.15,引張強度 49[N/mm²],弾性係数 3.5[kN/mm²])とし,円柱 の全表面に塗布した。供試体は,母材コンクリ ートの配合,供試体寸法(かぶり厚さ),欠陥の 種類を実験パラメータとして,全部で16種類と した。供試体数は各種類1体とした。

- *1 長岡技術科学大学大学院 工学研究科 建設工学専攻 (正会員)
- *2 長岡技術科学大学助教授 工学部 環境・建設系 博士(工学) (正会員)

W/C (%)	Ĺ	単位量	(kg/n	混和剤 (kg/m ³)						
	W	С	S	G	AE 減水剤	AE 剤				
45	153	339	804	1037	0.0152	0.75				
55	165	300	804	1037	0.0135	0.75				
65	175	269	804	1037	0.0121	0.75				

表-1 コンクリートの配合

表-2 供試体の種類

供試体 No。	W/C (%)	かぶり (mm)	被覆材	欠陥		欠陥 面積率 (%)
1	45	45				
2		70	なし			
3	55	45		_		_
4		70				
5	(5	45				
6	65	70				
7	- 55	45	あり	なし		0
8				ピンホール	10 個	0.03
9					20 個	0.06
10					30 個	0.09
11					5個	3
12				浮き	10 個	6
13					15 個	9
14				剥がれ	2cm×1 本	
15					1cm×2 本	10
16					0.5cm×4本	

供試体はコンクリート打設後28日間水中養生 し,通電時に円柱の半径方向の電流が卓越する ように,上下面に側面より厚くエポキシ樹脂を 塗布した。

2.2 模擬欠陥の導入

欠陥は、ピンホール、浮き、剥がれ(隙間) を模した3種類とした。各種類に対して欠陥量 や欠陥の大きさを3パターン変化させた。図-1に模擬欠陥を導入した供試体を示す。

ピンホールは、被覆材を塗布後、キリ(径 1mm) によって供試体側面を1周するように施工した。 実験ケースは、ピンホール数が供試体当たり 10 個、20個、30個(側面積に対する欠陥面積率 0.03, 0.06、0.09%)の3種類とした。

浮きは、予め供試体表面にスポンジシート(縦 2cm×横2cm、厚さ1mm)を貼付けておき、その 上から被覆材を塗布することにより導入した。 実験ケースは、欠陥数が供試体当たり5個、10 個、15個(欠陥面積率3、6、9%)とした。

剥がれは, 被覆材塗布前にテープを供試体周

りに貼付け, 塗布後にそれを取り除くことで設けた。実験ケースは, 剥がれの面積を同一として,幅を変化させた 2cm×1本, 1cm×2本, 0.5cm×4本(全て欠陥面積率 10%)の3種類とした。

2.3 通電方法

通電試験装置を図-2に示す。供試体を 3%NaCl溶液に入れ,鉄筋を陽極,供試体外部の 銅板を陰極として,直流電源装置を接続し,30V の定電圧を加えた。試験中は,供試体を流れる 電流の経時変化を測定した。

3. 被覆材の塩化物イオン拡散係数の導出方法²⁾ 3.1 概要

本法は、表面被覆材を施した供試体の通電試 験結果と、濃度拡散メカニズムを仮定した塩化 物イオンの移動解析結果が、経験上一定の相関 関係を満足することを利用し、表面被覆材の塩 化物イオン拡散係数を同定するものである。既 報²⁾において、方法を詳述したので、ここでは概 略のみ述べる。

3.2 被覆材中における塩化物イオンの拡散移動 モデル

まず,コンクリート表面における塩化物イオンの移動に関する境界条件は,熱伝導問題における熱伝達境界と類似の考え方を適用し,表面における塩化物イオンの流束を次式で表す。

$$J_{cldif} = -D_{Cl} \frac{C_{clf}^s - V_o \cdot C_{ext}}{h_{Cl}}$$
(1)

ここに、 J_{cldif} :境界における塩化物イオンの拡散 流束[kg/m²/s]、 D_{Cl} :水中における塩化物イオン の拡散係数(=1.35×10⁻⁹ [m²/s])、 C^{s}_{clf} :コンクリ ート表面における単位体積中の自由塩化物イオ ン濃度[kg/m³]、 V_{o} :コンクリート単位体積中の 総細孔量[m³/m³]、 C_{ext} :外部の液状水中の自由塩 化物イオン濃度[kg/m³]、 h_{Cl} :コンクリート表面 近傍に形成される塩化物イオン濃度勾配の層

(境界層)の厚さ[m]である。h_{cl}の値は既報²⁾³⁾と 同様に 0.00075mとする。この値は、物理的意味 が類似していることから、大気中におけるコン クリートの乾燥現象の解析の際にコンクリート 表面の湿度勾配層の厚さとして用いた値⁴⁾を準 用したものである。式(1)中のD_{cl}/h_{cl}は、数式表現 の上では熱伝導解析における熱伝達率に相当し、 境界の物質透過性状を表現する。

次に,コンクリート表面に被覆材を施工した 場合,被覆材を透過してコンクリートに流入す る塩化物イオン流束を,この境界条件式を拡張 した以下の式により表現することとする。

$$J_{cldif} = -D_{Cl} \frac{C_{clf}^s - V_o \cdot C_{ext}}{h'_{Cl}}$$
(2)

ここに, h'_{cl}は表面被覆材による遮蔽効果を含ん だ仮想的な境界層厚さである。実際には表面近 傍の濃度勾配層と被覆材中を透過することから,

$$h'_{Cl} = h_{Cl} + t_s \frac{D_{Cl}}{D_s} \cong t_s \frac{D_{Cl}}{D_s}$$
(3)

ここに、 D_s :被覆材および改質材の塩化物イオン拡散係数 $[m^2/s]$, t_s :被覆材および改質材の厚さ[m]である。式(2)(3)より、

$$J_{cldif} = -D_s \frac{C_{clf}^s - V_o \cdot C_{ext}}{t_s}$$
(4)

被覆材の実際の厚さを正確に測るのは困難であること、本モデルでは被覆材の物質遮蔽性能はts とDsの比によって決まるので、物質透過現象を 計算する際にはその比さえ正確に求まっていれ ばよいことから、ここでは被覆材の厚さを 1.0mmと仮定してその条件下での塩化物イオン 拡散係数を同定し検討することとした。

3.3 供試体中の塩化物イオン拡散の解析法²⁾³⁾

本研究では、塩化物イオンを含む水溶液中に 浸漬されたコンクリート円柱供試体内の半径方 向(側面より中心部に向かう方向)の塩化物イ オンの移動を考えることになる。数値計算は差 分法により行う。解析モデルの概念図を図-3 に示す。コンクリート内部の塩化物イオンの拡 散移動解析は、著者らが開発したコンクリート の細孔構造に基づく解析手法を用いて行う³⁾⁴⁾。

図-3 円柱供試体中の塩化物イオン移動解析 の概念図

4. 実験結果と解析結果

4.1 通電試験結果

図-4に、かぶり45mm、W/C55%のコンクリ ートを用いた供試体のシリーズの電流の経時変 化を示す。供試体 No.3 と 16 は、試験期間中に 電流が急に増加している。これは、鉄筋の腐食 膨張によりコンクリートに腐食ひび割れが発生 したためである。No.3 以外の供試体は電流が概 ね一定となる定常状態が現れている。この電流 値はかぶりコンクリートと表面被覆材のトータ ルの物質透過抵抗性の指標と考えることができ る。そこで,試験終了時まで(ひび割れが生じ た供試体は腐食ひび割れが発生するまで)の積 算電流量をそれまでの時間で除した平均電流 *I* を試験結果の代表値として抽出する。平均電流 が小さいほど,物質遮蔽性が大きいことになる。

図-5は、かぶり45mm、W/C55%のコンクリ ートを用いた供試体のシリーズの平均電流を示 している。被覆材に欠陥を導入した供試体はい ずれも、被覆材なしの供試体と健全な被覆材に 覆われた供試体の中間の結果となった。

被覆材がコンクリートから浮いた状態を再現 した供試体 No.11, 12, 13 の物質遮蔽性能は健 全な被覆材の供試体 No.7 の結果に近い。浮きが あっても物理的な穴があいていない限り,物質 遮蔽性能はそれほど損なわれないことがわかる。

被覆材のピンホールや剥がれを模擬し物理的 な穴を設けた供試体は、それぞれ物質遮蔽性能 が損なわれた。ピンホールを再現した供試体 No.8, 9, 10 では、ピンホールの量に応じて順次 物質遮蔽性能が低下した。

4.2 実験結果と解析結果の相関性の検討

平均電流は本実験条件下における供試体のト ータルの物質遮蔽性能の相対比較には便利であ るが,結果に一般性がないので,そのままでは 知見を他の問題に応用できない。そこで,実験 結果と解析結果を比較することにより,被覆材 の拡散係数を導き出す。その準備として,各供 試体の通電試験結果と拡散移動解析結果が経験 的な相関関係を満たすことを確認する。

各供試体中の塩化物イオンの拡散移動解析値 の代表値として,定常状態における塩化物イオ ン流束 Jを抽出する。

図-6に、被覆材を施工していない供試体に おける通電試験結果と拡散移動解析結果の相関 を示す。解析に必要なコンクリートの物質移動 特性に関する材料パラメータは、著者らの既往 の研究³⁾⁴⁾に基づきコンクリート配合より決定し た。図-6には本研究の実験結果の他に、池津 らの実験結果²⁾もプロットしている。

水セメント比, かぶり厚さによらず, 実験結

果と解析結果との間には一定の関係が認められる。この相関関係を以下の近似曲線で表した。

$$J = 1.6 \times 10^{-8} \times I^{1.15} \tag{5}$$

4.3 欠陥を有する被覆材の平均塩化物イオン拡 散係数の同定

4.2 で得られた相関関係が被覆材を有する供 試体にも成立すると仮定し,解析結果と実験結 果が近似曲線上に位置するように被覆材の拡散 係数D_sの値を決定する。 このようにして求めた欠陥を有する被覆材の 平均塩化物イオン拡散係数を図-7に示す。

欠陥のない健全な被覆材(No.7)の塩化物イ オン拡散係数は、コンクリート(No.3)の塩化 物イオン拡散係数に比べ3オーダー小さい結果 となった。これは、著者らの既往の研究²⁾におい ても同程度の値が得られている。

拡散係数で比較した場合であっても,浮きを 模擬した欠陥を導入した被覆材は,健全な被覆 材と大差ない拡散係数となった。ピンホールの 場合約 1~1.5 オーダー,剥がれの場合約 2~2.5 オーダー,健全な被覆材に比べて平均拡散係数 が大きくなるという結果となった。ピンホール や剥がれはコンクリートが外部に直接さらされ るため,優先的な侵入経路となり,平均的な物 質遮蔽性能が大きく低下したと考えられる。

5. 被覆材の欠陥が物質遮蔽性能に与える影響 に関する検討

5.1 欠陥面積率を用いた平均拡散係数

欠陥を有しない表面被覆材は, コンクリート 中への腐食因子の侵入を実用上許さないと考え てよいほど高い物質遮蔽性能を有するが, 欠陥 を有する場合無視できないほど物質遮蔽性能が 損なわれることが実験結果より明らかとなった。 したがって, 既知情報をもとに欠陥の影響を考 慮した表面被覆材の物質遮蔽効果を予測できる ことが工学的に重要といえる。本論文では, そ の第1段階として単純なモデルにより欠陥の影 響を表すことができるか検討することにする。

欠陥の状態を一元化した簡単な指標により定 量化する場合,まず面積率で表すことが考えら れる。欠陥面積率とは表面被覆材の単位面積当 たりに存在する欠陥の面積の割合であり,欠陥 の形状,大きさ,個数によらない。図-8はこ れを1次元で模式的に表したものである。

次に、欠陥を有する表面被覆材の平均拡散係 数を簡単に表すことを考える。この場合、面積 率を考慮して線形に平均化するモデルが考えら れる。欠陥部分の境界条件が式(1)、健全な被覆

材部分の境界条件が式(4)で表されることに整合 させると、欠陥を含む被覆材の塩化物イオン平 均拡散係数Daveは、以下の式で表される。

$$\frac{D_{ave}}{t_s} = \alpha \frac{D_{cl}}{h_{cl}} + (1 - \alpha) \frac{D_s}{t_s} \tag{6}$$

 t_s =1.0mm, h_{cl} =0.75mmであることを考慮し,近似的に以下で表す。

$$D_{ave} = \alpha D_{cl} + (1 - \alpha)D_s \tag{7}$$

ここに、 D_{ave} : 欠陥を含む被覆材の塩化物イオン 平均拡散係数 $[m^2/s]$ 、 α : 欠陥面積率、 D_{cl} : 水中 における塩化物イオン拡散係数 $[m^2/s]$, D_s : 被覆 材の塩化物イオン拡散係数である。なお本式は、 欠陥部分は表面被覆材に覆われておらずコンク リート表面が直接露呈している部分としてモデ ル化している。したがって本研究の実験で模擬 した欠陥のうち、ピンホールや剥がれに対応し、 浮きは本来このモデルでは表せない。

図-9に欠陥面積率と塩化物イオン拡散係数 の関係の実験値を式(7)のモデルとともに示す。 浮きを導入したシリーズも浮きの面積率を欠陥 面積率としてプロットした。ピンホールの面積 率は浮きや剥がれに比べてオーダーが小さいの で,同一グラフ上で比較するために欠陥面積率 は対数で表した。

ピンホールと剥がれを導入したシリーズの結 果を見ると、欠陥面積率に応じて平均拡散係数 が増加する傾向が確認できる。浮きを導入した 供試体はそれらの傾向からやや外れている。す なわち、欠陥により物質遮蔽性能が損なわれる ことは認められるものの、欠陥面積率と平均拡 散係数の間には明確な相関は認められない。

欠陥を導入したいずれの供試体の結果も,式 (7)で表される曲線よりも拡散係数が小さい側に 位置している。つまり,欠陥量を面積率で表し て線形平均化モデルを用いて予測した場合より も,実際には物質遮蔽性は損なわれないといえ る。このような結果が得られた理由は明らかで はないが,平均化モデルにより予測することで, 安全側の結果を与えることが明らかとなったこ とはひとつの知見として意義がある。

剥がれを導入した供試体3体は、欠陥の大き さと数は異なるが欠陥面積率は同一である。こ れら3体は、拡散係数に若干の相違がみられ、 0.5cm×4本(No.16)のように、面積の小さい剥 がれが多数あるものは、大きい剥がれが少数あ るものよりも物質遮蔽性能が低下した結果とな っている。同一欠陥面積率の場合個々の欠陥寸 法が小さいほうが物質遮蔽性を損なう傾向が一 般的なものであるのかどうかは、今回のデータ だけでは確言し難い。この範囲の近傍で欠陥の 大きさと面積率をパラメータとした実験を行う ことにより明らかにしたいと考えている。

6. まとめ

本研究において、以下の知見が得られた。

(1) コンクリート表面被覆材は欠陥がない場合, きわめて高い物質遮蔽性を有するが,欠陥が ある場合その影響が無視できないと考えら れる程度に物質遮蔽性が損なわれることが ある。したがって,実構造物における表面被 覆材の物質遮蔽効果を評価する場合,欠陥の 影響を考慮することが重要である。

因 5 天歌 6 7 年 前 6 0 比 较

- (2) コンクリート用表面被覆材に発生すると考 えられる欠陥のうち、ピンホール、剥がれな ど物理的な穴状の欠陥が物質遮蔽性に及ぼ す影響が大きい。一方、コンクリートと表面 被覆材との間に浮きが生じても、穴があいて いなければ物質遮蔽性が大きく損なわれる ことはない。
- (3) 欠陥を有する表面被覆材の平均的な物質遮 蔽性能は単位面積当たりの欠陥面積率と相 関がある。
- (4) 実験で得られた欠陥を有する表面被覆材の 平均拡散係数は、欠陥量を面積率で表して線 形平均化モデルを用いて予測される拡散係 数よりも小さい。

参考文献

- 1) 土木学会:表面保護工法設計施工指針,コン クリートライブラリー119,2005
- 2) 池津和弘,下村 匠:コンクリート用被覆材 および改質材による塩分遮蔽メカニズム,コ ンクリート工学論文集, Vol.27, No.1, pp.895-900, 2005.6
- 3) 笠原裕子,下村 匠,YCHENNA:連続繊 維シート接着によるコンクリート中への塩 分侵入抑制効果の定量評価,コンクリート工 学論文集,Vol.25, No.1, pp.311-316, 2003.6
- 下村 匠,福留和人,前川宏一:微視的機構 モデルによるコンクリートの乾燥収縮挙動 の解析,土木学会論文集,No.514/V-27, pp.41-53,1995.5