論文 ポータブル型蛍光 X 線分析装置を用いたコンクリートの分析

金田 尚志*1·石川 幸宏*2·魚本 健人*3

要旨:コンクリートの分析を行う場合,その用途や検出対象成分により様々な分析手法が用いられている。しかし,これらの分析手法のほとんどが,試験室据置型の分析装置により行われており,現場において短時間で分析を行ったり,コンクリート構造物を直接測定することは困難な場合が多い。 近年,可搬型の高性能蛍光 X 線分析装置が開発され,オンサイト分析が可能となってきた。これにより,サンプルを試験室に持ち帰る必要が無くなり,測定部を直接,短時間で微破壊的に分析できるため,作業効率の改善やコストの削減が期待できる。ポータブル型蛍光 X 線分析装置のコンクリート分析への適用性を検証し,その有効性を確認した。

キーワード:ポータブル型蛍光 X線分析装置,オンサイト分析,塩化物量,元素分析

1. はじめに

コンクリート構造物の劣化診断・調査の際, 非破 壊検査,化学分析・機器分析,モニタリング等が行 われている。赤外線サーモグラフィ法,超音波法, レーダー法,打音法,X 線法等の従来の非破壊検 査手法は、ひび割れ、はく離・浮き・空隙などの欠陥 部の検出,鋼材の検出といったコンクリートの物理 的な情報を得るのに有効な検査手法である。しかし ながら、コンクリートの中性化や塩化物量等の化学 的な情報を得ることはできない。著者らは,次世代 型非接触・非破壊検査手法の構築を目指し、劣化 因子を効率良く検出できる検査システムの開発を行 っている。分光技術を応用した劣化調査手法の開 発¹⁾もその一例で、劣化因子の検出、濃度推定、分 布状況を非接触・非破壊的に短時間で測定するこ とに成功している。今後,維持・管理が必要となる構 造物が増えていく中,従来の検査手法では限界が あり,オンサイト分析による作業性の向上が重要とな ってくる。

蛍光 X 線分析は新しい技術ではなく, 元素分析 の一手法として用いられている。軽元素よりも重元 素の分析に適しており, 検出される蛍光 X 線の波長 から元素を特定でき, X 線の強度から元素を定量で きる。コンクリート関連では, セメントの蛍光 X 線分 析方法²⁾が JIS 化されており, ig.loss, SiO₂, Al₂O₃, Fe₂O₃等の定量分析について記述されている。実構 造物の硬化コンクリートをサンプルとして採取し,劣 化物質を定量分析することも可能であるが,試験室 で測定することを考えると,他の分析手法と比較し ても利点は少ない。従来の装置は試験室据置型で, 装置内部に試料をセットする必要があり,大型・異 形試料を測定することはできなかった。しかし,近年, 小型で可搬型の高性能蛍光 X 線分析装置が開発 され,オンサイト分析が可能となってきた。測定対象 を直接,微破壊的に分析できるため,コンクリート構 造物の調査に適用すれば,非常に有効な検査手 法となる。

今回は,現場におけるコンクリート中の塩化物量 測定の可否を検証することを主眼におき,実験を行った。その結果,蛍光 X 線分析法により,精度良く 分析できることを確認した。

2. 蛍光 X 線分析

2.1 蛍光 X 線分析の原理

X線を試料に照射したとき,試料から発生する蛍 光X線を検出・分光して元素分析を行う方法を蛍光 X線分析という。蛍光X線は,試料を構成する元素 固有の波長(エネルギー)を持つので,簡単に定性

*1 東京大学生産技術研究所都市基盤安全工学国際研究センター 特任助手 博(工) (正会員) *2 芝浦工業大学大学院 工学研究科 建設工学専攻 (正会員) *3 東京大学生産技術研究所都市基盤安全工学国際研究センター 教授 工博 (正会員) 分析ができ、各スペクトルの強度から定量分析ができる³⁾。

図-1 蛍光 X 線放射の原理

図-1 に蛍光 X 線放射の原理を示す。原子に X 線(一次 X 線)を照射すると,一部の内殻軌道の電 子が励起されて外殻にはじき出される。内殻軌道に 空間が生じると原子が不安定になるので,空いた空 間(空孔)を埋めるために,外殻電子が落ち込んでく る。外殻電子はエネルギーが高い状態ではエネル ギーが低い内殻軌道を回ることができないため,そ の差に当たるエネルギー差が蛍光 X線(二次 X線) として放射される。蛍光 X 線のスペクトルは各元素 固有であり,その強度は試料中の元素濃度に比例 する。

K 殻の電子が放出されて L 殻の電子が落ちてく るときの蛍光 X 線を Kα線, L 殻の電子が放出され て M 殻の電子が落ちてくるときの蛍光 X 線を Lα線 と呼び, 図-2 に示すとおり, 元素ごとに固有のエネ ルギー値を持っている。二(三)つ外側の殻からの電 子が落ちてくるときの蛍光 X 線はβ(γ)線と定義され ている。K 殻の電子をはじき出すのに一番大きな励 起エネルギーを必要とし、また、原子番号が大きく なると、陽子が電子を引きつけている力が大きいた め、より大きな励起エネルギーが必要となる。したが って X 線管球の特性にも依存するが、原子番号の 大きい元素を測定するには、Kα線ではなく Lα線を 用いる。励起エネルギーは、電子を外まではじき出 すエネルギーであるから、外殻から落ち込んでくる 際に放出される蛍光 X 線より高い必要がある。励起 できる下限のエネルギーより低い X 線を強く放射し ても励起は起こらない。励起に必要な最低のエネル ギーを吸収端エネルギーという。

2.2 X 線管の原理

元素を励起するための一次X線はX線管で発生 させる。X線管は図-3のように陽極(ターゲット金属) と陰極を持っている。真空管内のフィラメントは,電 流により加熱され,熱電子を放出する。陽極に高電 圧を加えると熱電子はこの電圧により加速され,金 属ターゲットに衝突する。そのとき失われる運動エ ネルギーのほとんど(99%超)は熱に変換され,一部 はX線の形で放射される(制動放射・連続X線)。ま た,その一部の電子はターゲット原子の電子を追い 出すことによりX線の形で放出しエネルギーを失う (特性X線)。この特性X線は原子に固有なエネル ギーをもち,原子番号が高ければそのエネルギーも

1 ⅠⅠ 水素	エネルギー値(keV) <mark>Kα線(赤色)</mark> Lα線(緑色)									² Не ~リウム							
з Li IJチウム	0.110 4 Be ベリリウム	原子番号──→			2.621 17 CI ← 元素記号				0.185 5 日 ホウ素	0.277 6 C 炭素	0.392 7 N 窒素	0.525 8 0 酸素	0.677 9 F フッ素	0.849 10 Ne ネオン			
1.041 11 Na ナトリウム	1.253 12 Mg マグネシウム							1.486 13 ДІ 7лё=Фь	1.740 14 Si ケイ素	2.013 15 P リン	2.307 16 S 硫黄	2.621 17 CI 塩素	2.956 18 Ar アルゴン				
3.312 19 K カリウム	3.690 20 Ca カルシウム	4.088 21 SC スカンジウム	4.508 22 Ti チタン	<mark>4.949</mark> 23 V パナジウム	5.411 24 Cr クロム	5.894 25 Mn マンガン	6.399 ²⁶ Fe 鉄	6.924 27 CO コバルト	7.471 28 Ni ニッケル	8.039 29 Cu	8.629 30 Zn 亜鉛	9.241 31 Ga ガリウム	9.875 32 Ge 7#2=74	10.530 33 AS _{砒素}	11.206 ³⁴ Se セレン	11.907 35 Br 臭素	12.631 36 Kr クリプトン
13.373 37 Rb ルビジウム	14.140 38 Sr ストロンチウム	14.931 39 Y イットリウム	15.744 ⁴⁰ Zr کارت	16.581 41 Nb ニオブ	17.441 42 MO モリブデン	18.325 43 丁C テクネチウム	19.233 44 Ru ルテニウム	20.165 45 Rh ロジウム	21.122 46 Pd パラジウム	22.102 47 Ag 銀	23.107 48 Cd カドミウム	24.137 49 In インジウム	25.191 50 Sn スズ	26.272 51 Sb アンチモン	27.378 52 Te テルル	28.509 53 ヨウ素	29.667 54 Xe キセノン
30.852 55 CS セシウム	4.464 56 Ba パリウム	ランタ ノイド 57-71	7.893 72 日f ハフニウム	8.139 73 Ta 9ンタル	8.390 74 W タングステン	8.644 75 Re レニウム	8.903 76 05 オスミウム	9.166 77 【『 イリジウム	9.433 78 Pt 自金	9.703 79 Au ≩	9.978 80 Hg 水銀	10.257 81 TI タリウム	10.540 82 Pb 鉛	10.826 83 Bi ビスマス	11.118 84 PO ポロニウム	11.413 85 At アスタチン	11.712 86 Rn ラドン
12.015 87 Fr 75ンシウム	12.324 88 Ra ラジウム	アクチ ノイド 89-103	104 Rf ラザフォルジウム	105 Db ドプニウム	¹⁰⁶ Sg ⊱-#-#??⊥	107 Bh ボーリウム	108 HS ハッシウム	109 Mt マイトネリウム									
ランタノイド			4.648 57 La ランタン	4.837 58 Се セリウム	5.031 59 Pr プラセオジム	5.227 60 Nd ネオジム	5.430 61 Pm プロメチウム	5.632 62 Sm サマリウム	5.842 63 Eu 2795274	6.053 64 Gd лкч=эд	6.269 65 Tb テルビウム	6.490 66 Dy Ултора	6.715 67 HO ホルミウム	6.943 68 Ег хлёфд	7.174 69 TM ツリウム	7.409 70 Yb イッテルビウム	7.649 71 LU ルテチウム
アクチノイド			12.635 89 AC	12.951 90 Th トリウム	13.271 91 Pa 705777=74	13.595 92 U ウラン	93 Np *ブツニウム	94 Pu ブルトニウム	95 Am דאיפטיא	96 Cm キュリウム	97 Bk バークリウム	98 Cf	99 ES	100 Fm フェルミウム	101 Md メンデレビウム	102 NO	103 L ľ

図-2 各元素のエネルギー値(keV)4)

高くなる。ターゲット金属として、タングステン、パラ ジウム、ロジウム、モリブデン、クロムなどが用いられ ている。これらのターゲットは、分析する元素によっ て使い分ける。分析対象元素と同種のターゲットを もつ X 線管は、照射される一次 X 線と、試料から放 射される蛍光 X 線が重なるため原則的に使用しな い。また試料中に含まれる元素の種類により、特性 X 線のエネルギー位置が近接している場合は干渉 し、試料の蛍光 X 線と重なる。元素の特性 X 線は、 多くの場合一つだけではなく Kα線、Kβ線…, Lα線、 Lβ線…というように複数個存在するので注意が必 要である。図-4 は例としてパラジウムとタングステン をターゲットとした場合の X 線特性を示したものであ

る。

図-2に示すとおり、Clの検出にはCl-Kα線(2.621 keV:キロ電子ボルト)を用いる。パラジウムをターゲ ットとして用いた場合、Pd-Lα線(2.838 keV)と近接し ているため、Clの励起効率が高く、タングステンをタ ーゲットとして用いた場合と比較して Cl 量が微量な 場合でも Cl-Kα線が明確にあらわれる(図-5)。

タングステンをターゲットとして用いた場合, 原子 番号が大きいため他の材質の X 線管に比べ, 連続 X 線の発生効率が高いという特徴があるが, タング ステンの連続 X 線より Pd-Lα線で Cl を励起させた 方が励起効率は高い。

2.3 蛍光 X 線分析装置の種類

蛍光X線分析法の方式には、分光結晶を用いた 波長分散型(WDXRF)と半導体検出器(EDS)を用い たエネルギー分散型(EDXRF)がある(図−6)。

波長分散型は,試料から発生した蛍光 X 線を分 光結晶によって分光し,これをゴニオメータで計測 するものである。波長分解能に優れ,検出感度が高 いという利点があるが,駆動系を組み込むため装置 が大型で複雑になり,オンサイト分析には不向きで ある。エネルギー分散型は,試料から出る蛍光 X 線 を直接,半導体検出器で検出した後に波高分析器 で電気的に分光し,蛍光 X 線スペクトルの波長を求 めて元素を特定する方法である。波長分散型と比 較し,波長分解能や検出感度は劣るが,多数の元 素を同時に分析することができ,短時間での分析が 可能となる。波長分散型に比べ安価で装置が小型 化できるため,オンサイト分析に適している。

2.4 X 線フィルタの選択

バックグラウンドの低減,妨害 X 線の除去のため に X 線フィルタを用いる。X 線フィルタの材質は,タ ーゲットと分析対象元素にあわせて選択し,注目す る元素のピーク以外の干渉要因を取り除くのが目的 である。図-7 にフィルタの材質による蛍光 X 線スペ クトルの変化を示す。

Teflon50はS, Cl, Al 付近のバックグラウンドを落 としてS, Cl, Al の検出効率を高めるために使用し, Ti20はCr付近のバックグラウンドを落としてCrの検 出効率を高めるために使用し, Mo+Al は不要な軽 元素部の連続X線をカットしてCd付近のバックグラ ウンドを落としてCdの検出効率を高めるために使用 する。しかし,軽元素は,低いエネルギーで励起す るため,フィルタを使用しない方がCl の励起効率が 高いことがわかる。

3. 蛍光 X 線分析による塩化物量の測定

3.1 装置設定

前述のように、コンクリート中の塩化物量を蛍光 X 線分析で測定するには、Cl-Kα線を用いる。したが

W/C	セメントの種類								
40%	普通ポルトランドセメント								
塩化物混入量(kg/m ³)[重量比%]									
No.	塩化分量	No.	塩化分量						
N40-0	無混入	N40-3.0	3.0 [0.154]						
N40-0.4	0.4 [0.021]	N40-6.0	6.0 [0.308]						
N40-0.6	0.6 [0.031]	N40-9.0	9.0 [0.462]						
N40-0.8	0.8 [0.041]	N40-12.0	12.0 [0.615]						
N40-1.0	1.0 [0.051]	N40-15.0	15.0 [0.769]						
N40-1.2	1.2 [0.062]	N40-20.0	20.0 [1.025]						
N40-1.5	1.5 [0.077]								

表-1 配合表

って, 試料から放射される 2.621 keV の光子数を高 精度で検出できる装置設定が要求される。図-6, 7 の結果から, ターゲットにパラジウム, X線フィルタは 使用せずに測定を行った。

3.2 測定条件

測定サンプルは, 表-1 のようにセメントペースト供 試体で, 練混ぜ水の中に塩化ナトリウムを混入した。 供試体作製時には, 塩化物濃度が不均一にならぬ よう材料分離に注意し, 封かん養生を行った。実験 パラメータとして, X線管の電圧, 焦点距離, 測定時 間を変化させ, 測定結果にどのように変化するかを 検証した(表-2)。

表−2 測定条件

ターゲット	·材質	X 線フィルタ				
パラジュ	לל	無し				
X 線管電圧	焦点距離	測定時間(秒)				
6~9kV	0~7mm	30, 60, 120, 180				

図-8にX線管電圧とP/B比(ピークとバックグラウンドの面積比)の関係を示す。電圧を上げると P/B 比が低くなるため,低い電圧で P/B 比の良い測定を

比が低くなるため,低い電圧で P/B 比の良い測定を 行った。図−9 は, X 線の焦点距離から,測定面を離 した場合,蛍光 X 線の強度がどの程度低下するか

を示したものである。X 線の焦点と測定面が離れる と,空気層による減衰が大きくなり、4mm で半分以 下になり、7mm 離れると2割に低減する。図-10は 測定時間でCl-Kα線(2.621 keV)のカウントがどの程 度ばらつくかを示したものである。測定時間が30秒 と短い場合は、測定結果の変動が大きく、120秒以 上では、安定した測定結果が得られた。

3.3 検量線の作成

図-11 のように試料の塩化物量が増えると、2.621 keV のカウント数が増えることが確認できる。ここで、 定量分析を行うために、Clの検量線を作成する。測 定条件は、図7~10の結果から、X線フィルタ無し、 X線管電圧 6kV, 焦点距離 0mm, 測定時間 180 秒 に設定した。図-12 に示すとおり、2.621 keV におけ

るカウント数(図-8 上図のようにピーク面積とする)と 塩化物量に高い相関関係があることが確認できる。

よって, Cl ピーク面積を検量線に代入することに より, 未知試料の塩化物量が推定できる。

4. 現場計測への応用

4.1 塩化物浸透深さの測定

実際のコンクリート構造物の塩化物量の測定は, ドリル粉やコアコンクリートを採取し,電位差滴定や EPMAによる分析が行われている。ポータブル型蛍 光 X 線分析装置により,ドリル粉(1g 程度で測定が 可能)やコアコンクリートを直接測定すれば,現場で 短時間に塩化物量の定量が可能となる。そこで,海 洋暴露供試体の塩分浸透深さの測定を試みた。測 定試料は,写真-1 のように海洋暴露場で暴露され たコンクリート供試体をカットしたものを用いた。断面 を EPMA で分析した結果が図-13 である。

暴露面から Cl が浸透していることが確認できる。 断面の蛍光 X 線分析は, 写真-2 のようにポータブ ル型蛍光 X 線分析装置の検出部を測定面に設定 することで可能となる。

図-13 EPMA の結果(CI の分布)

写真-2 ポータブル型蛍光 X 線分析による測定

任意の深さにおいて, 骨材以外の部分の 3 点を 測定部として選択し, 平均値をその深さの値とした。 図-14 は, 測定された蛍光 X 線スペクトルを検量線 に代入し推定された塩化物量と, 同じ供試体を電位 差滴定(JCI 法)で測定したものをプロットした結果で ある。

従来手法と比較し,同じ傾向を示していることが 確認できる。電位差滴定法と比較し,試料の調整も 必要無く,微破壊的に測定できるため,測定時間が 大幅に短縮され,現場での計測も可能となる。しか し,現装置では X 線の照射径(3mm)が小さく,細骨 材も避けて測定する必要があるため,実用化するた めには,照射径の拡大の検討が必要である。

4.2 元素分析への応用

現在主流となっているエネルギー分散型蛍光 X 線分析装置の測定可能元素は₁₂Mg~92Uである。 コンクリート中の Cl 以外の元素,例えば, Mg, Al, Si, S, K, Ca, Fe等の分析も可能である。一例として 図-15 に硫酸による劣化を受けたコンクリートの蛍光 X線スペクトルを示す。正常のコンクリートと比較し, S-Kα(2.307 keV)のカウント数が増加しているのが 確認できる。同時に硫酸劣化により,骨材が露出し たため,ケイ素のカウントが増え,カルシウムのカウ ントが減少している。

図-15 硫酸劣化による蛍光 X 線スペクトルの変化

5. 結論

蛍光 X 線分析装置により、コンクリート中の塩化 物量が精度よく測定できることが確認された。従来 の手法のように、サンプルを採取し、試験室に持ち 帰って電位差滴定測定を行うより、測定時間が短縮 され、現場で瞬時に結果を得ることができる。したが って、検査効率の向上ならびにコストダウンが可能 となる。他の分析手法と比較し、蛍光 X 線分析法は 化学薬品を使用せず、測定面の事前処理を必要と しないため、微破壊、無公害、低エネルギー、環境 負荷の少ない検査手法である。コンクリートの劣化 検査への応用が期待される。

謝辞: 蛍光 X 線分析の導入にあたりまして, 山形大 学工学部電気電子工学科の東山禎夫教授に助言 をいただきました。また, EPMA の測定ならびに塩 分分析は東京大学生産技術研究所の星野富夫氏 に, 蛍光 X 線分析はアワーズテック株式会社の永 井宏樹氏, 中嶋佳秀氏に多大なご協力を頂きまし た。ここに記して感謝の意を表します。

参考文献

- 金田尚志,石川幸宏,魚本健人:近赤外分光 法のコンクリート調査への応用,コンクリート工 学, Vol.43, No.3, pp.37-44, 2005.3
- 日本工業規格:セメントの蛍光X線分析方法, JIS R 5204, 2002.7
- 社団法人日本分析機器工業会:分析機器の手引き,2005.8
- Princeton Gamma-Tech, Inc. : X-ray Critical Absorption and Emission Energies in keV, Nuclear Products Catalog, 2002.