論文 超音波法によるコンクリート物性予測手法に関する研究

中川 裕之*1·横田 優*2·松田 耕作*3

要旨:アルカリ骨材反応が生じたコンクリート構造物を評価するために,超音波法によりコンクリート物性を予測する手法を検討した。本研究では,供試体による実験データから把握した超音波伝播特性とコンクリート物性との関係をニューラルネットワークで学習し,その学習結果を用いて,圧縮強度および静弾性係数を予測する手法を構築した。実構造物による検証を行った結果,本予測手法の有用性を確認できた。

キーワード:超音波法,透過法,アルカリ骨材反応,圧縮強度,ニューラルネットワーク

1. はじめに

超音波法はコンクリート構造物に対する非破 壊検査としても古くから利用されているが,測 定対象であるコンクリートが複合材料であるこ との影響を大きく受け,測定結果からコンクリ ート物性を定量評価することは難しいのが現状 である¹⁾。一方,コンクリート構造物の維持管理 における定期検査のためには,非破壊検査に関 する精度向上がますます求められている。

筆者らはアルカリ骨材反応(以下,「ASR」という)によるコンクリート膨張劣化に関して, 透過法による超音波測定から得られる受振波形 や周波数特性等の超音波伝播特性が透過距離一 定(25cm)の場合には,コンクリート物性を評 価する有効な指標となる可能性が高いことを確 認した²⁾。

そこで本研究では,超音波法によりコンクリ ート物性を評価する手法の開発を目的として, 以下に示すように予測手法の構築およびその有 用性について検討した。

- (1) 超音波透過距離の影響を考慮した供試体実 験による超音波伝播特性の把握
- (2)実験結果を基礎データとして、透過法による超音波測定からコンクリートの圧縮

*1 (株)四国総合研究所 土木技術部 (正会員)

*2 (株)四国総合研究所 土木技術部部長 工博 (正会員)

*3 (株)四国総合研究所 土木技術部主席研究員 (正会員)

強度および静弾性係数を予測する手法の構 築

(3) 実構造物に対する超音波測定による予測手 法の検証

2. 実験概要および結果

ASR によるコンクリート膨張劣化に対する超 音波伝播特性, 圧縮強度および静弾性係数を把 握するための実験を行った。実験に際しては, 超音波透過距離が一定とはならない実構造物へ の測定を想定して,透過距離の違いも考慮した 供試体とした。

2.1 供試体

供試体は予め大型コンクリート供試体(縦 60 ×横 90×厚さ 50cm)を製作し,材齢1年4ヶ月 でコア抜き(φ10cm×コア長 30,60,90cm,以下,

写真-1 円柱コア供試体(コア長 60cm)

表-1 コンクリート配合

Gmax	W/C	スランプ	空気量	s/a		単位量	(kg/m ³)		AE減水剤	AE調整剤
(mm)	(%)	(cm)	(%)	(%)	W	С	S	G	C×(%)	C×(%)
20	50	12±2	4.5±1	44.4	165	330	784	981	0.5	0.0011

「円柱コア供試体」という)した。写真-1 に円柱コア供試体(コア長 60cm)を示す。使 用したコンクリート配合および物性値等を表 -1,表-2に示す。粗骨材には化学法(JIS A 1145₂₀₀₁)で「無害でない」と判定された反応 性骨材(安山岩と流紋岩の混合)を使用し, 練混ぜ水に塩化ナトリウムと水酸化カリウム を添加した。円柱コア供試体に評点距離20cm 間隔にリングを取り付け,デンマーク法を参 考に,飽和塩化ナトリウム水溶液の入った容 器に浸漬し,46℃の恒温槽内で促進養生した。

2.2 測定項目および測定方法

促進養生中,定期的にコンタクトゲージ法に よる長さ測定(JISA1129-2₂₀₀₁)を行い,コア採 取直後からの長さ変化量より膨張率を算出した。 長さ測定と同時に透過法による超音波測定(2.3 に詳述)を行った。また,大型コンクリート供 試体から別途,円柱コア(φ10cm×コア長25cm ×8本)を採取し,順次所定の膨張率において両 端を切断し長さ20cmに整形した後,圧縮強度試 験(JISA1108₁₉₉₉)および静弾性係数試験(JISA 1149₂₀₀₁)を行った。

2.3 超音波測定方法および伝播特性の指標

超音波測定は、円柱コア供試体の長さ方向に超 音波を伝播させる透過法とした。表-3に測定器 仕様、写真-2に測定状況を示す。なお、印加電 圧は 30,150,350,500Vの4種類で測定し、受振増 幅度は 29~60dB 間の任意で測定したデータを 測定後に全て 60dB 相当に換算した。

超音波伝播特性として評価する指標項目を図 -1,図-2に示す。受振波からは超音波伝播速 度,最大振幅および第一波振幅,また受振波を フーリエ変換した周波数スペクトルからは,ス ペクトル強度の最大値(ピーク強度と称する) およびその周波数(ピーク周波数と称する),ま た0~2500kHz範囲の周波数スペクトル線と横 軸(スペクトル強度0)とで囲まれた部分の面積 (受振波総エネルギーと称する),そして受振波 総エネルギーの50%相当にあたる周波数(平均 周波数と称する)の7項目とした。

表-2 アルカリ含有量とコンクリート物性

等価Na ₂ O量	圧縮強度(材齢28日)	静弹性係数(材齢28日)
(kg/m ³)	(N/mm^2)	$(\times 10^4 \text{ N/mm}^2)$
5.7	30.4	2.72

表-3	測定器仕様				
発・受振用 センサ	セラミック : φ76mm 共振周波数 : 0.5MHz				
印加電圧	30, 150, 350, 500V				
受振増幅度	29~60dB				
発振繰返周波数	200Hz				
サンプリング間隔	0.2µsec				
サンプリング数	4096 points				
受振波形データ	3000回平均				

2.4 測定結果例および伝播特性の考察

円柱コア供試体(コア長 30cm)における膨張 率と各超音波伝播特性との関係を図-3に示す。 なお,最大振幅,第一波振幅,ピーク強度およ び受振波総エネルギーは,各々において,膨張 率が 0.0%時の値との比として整理した。

いずれの指標も膨張率の増加に伴い減少して いるが、特に超音波伝播速度以外の各指標は膨 張率の初期変化を敏感に捉えている。これらの 傾向はコア長 60,90cm 供試体においても同様で あった。仮に実構造物の測定においては、コン クリート品質が健全な状 態から膨張初期段階まで の適切な評価が構造物早 期診断として特に重要で あると考えられるため, これら各超音波伝播特性 による評価は有益と思わ れる。

次に透過距離の影響を 図-4に最大振幅比,図-5 に平均周波数に関して 比較検討した。図-4(b), 図-5(b)は各々図-4(a), 図 - 5(a) から膨張率 0.0%と 0.1%程度のとき を表示したものである。 なお,最大振幅はコア長 30cm, 膨張率 0.0%での値 との比として整理し、コ ア長 60,90cm 供試体の膨 張率は, 各リング間の内 で最大値とした。コア長 (透過距離) が長くなる に従い, 図-4(b) に示し た最大振幅比の減衰から 超音波の伝播エネルギー 量が大きく減少し,図-5(b) に示した平均周波数 から, 伝播する高周波成 分も減少していることが わかる。他の伝播特性も 同傾向であり,透過距離 は伝播特性に大きな影響 を与えている。

2.5 コンクリート強度特 性と膨張率

図-6 に円柱コア供試体(コア長 25cm)の圧縮 強度および静弾性係数と 膨張率を比較した。膨張

に伴い圧縮強度および静弾性係数が低下 している。圧縮強度および静弾性係数と膨 張率を本実験結果のみから関係づけるこ とは尚早ではあるが、本実験結果からは、 各超音波伝播特性と膨張率の関係、さらに 膨張率と圧縮強度および静弾性係数との 関係から、超音波測定により圧縮強度およ び静弾性係数を直接予測できる可能性が 高いことがわかった。

 3. コンクリート物性予測手 法の構築

超音波法により圧縮強度お よび静弾性係数等のコンクリ ート物性を予測するためには 測定条件や各超音波伝播特性 を総合的に判断する必要があ る。相互に関連する複数の測 定条件や各伝播特性を同時に

考慮したコンクリート物性を予測する手法の構築にあたっては,非線形回帰手法であるニューラルネットワークを用いることとした。

圧縮強度(N/mm¹

本研究では、円柱コア供試体による実験結果 から蓄積した諸データを基礎データとし、測定 条件や各伝播特性と圧縮強度および静弾性係数 との関係をニューラルネットワークにより学習 し、その学習結果を用いて、圧縮強度および静 弾性係数を予測する手法を構築した。

3.1 学習条件

ニューラルネットワークは図-7 に示す階層 型ネットワークとし、学習方法はバックプロパ ゲーション法にて行った。入力項目は図-7に示 す9因子とした。

学習する出力項目は圧縮強度および静弾性係 数とした。しかし、円柱コア供試体(コア長 30,60,90cm)の実験データ中には、超音波測定毎 の圧縮強度および静弾性係数データはない。そ こで、円柱コア供試体(コア長25cm)における 圧縮強度および静弾性係数と膨張率との関係 (図-6)から図-8に示す回帰式を求め、超音

波測定毎の膨張率から換算した圧縮強度および 静弾性係数を出力項目の教師値とした。

- その他主な条件を以下に示す。
- 入力データ数:314 データ
- ・出力関数:シグモイド関数
 - (勾配条件となる係数:1.0)
- ・学習率:0.05
- ・学習回数:2000回

また,出力ユニットは1ユニットとし,圧縮強 度および静弾性係数を分けて学習させた。

3.2 学習結果

ニューラルネットワークによる学習結果状況 を図-9,図-10に示す。

図-9(a), 図-10(a)は教師値とした圧縮強度 および静弾性係数(実験データにおける膨張率 からの換算値)と学習によって入力データ(9因 子)から算出した値とを比較したものである。 図-9(b), 図-10(b)は教師値と学習結果値から 式(1)に示した学習誤差を求め,その学習誤差分 布状況を示したものである。

$$(Pc-Pe)/Pe \times 100$$
(1)

ここで、Pc は学習結果値、Pe は教師値である。

3.3 予測手法の構築

これまでの検討結果か ら,コンクリート構造物の 圧縮強度および静弾性係 数を予測するために,以下 に示す予測手法を構築し た。

- (1) 構造物に対して透過 法による超音波測定を 行う。
- (2) 受振波形から超音波 伝播速度,受振波の最 大振幅,第一波の振幅 を,また周波数スペク トルからピーク強度, 受振波総エネルギー, ピーク周波数および 平均周波数を求め,以

上7指標を超音波伝播特性とする。

- (3) 測定条件(印加電圧,透過距離),超音波伝 播特性(7指標)を入力条件とする。
- (4) ニューラルネットワークの学習結果より得られた結合荷重(重み係数),しきい値を用いて、図-7と同様の階層構造を通した認識計算を行い、圧縮強度および静弾性係数を予測する。

4. 予測手法の検証

4.1 実構造物の測定

構築した予測手法について現段階での妥当性 を確認するために,実構造物の測定を行った。 測定した構造物は以下の3箇所である。

- (1) ASR が生じている機械設備基礎(A構造物と する): 材齢 30 年,鉄筋コンクリート構造, 透過距離は 20~250cm
- (2) ASR は生じていないが供用期間の長い解体 直前の建築物(B構造物とする):材齢 50 年, 鉄筋コンクリート構造,透過距離は25~60cm

(3) ASR による劣化は見られない機械設備基礎 (C構造物とする):材齢35年,鉄筋コンク リート構造,透過距離は17~202cm

超音波測定は,電磁波レーダを使って鉄筋位 置を確認し,無筋部を透過法により行った。ま た,コンクリート構造物表面の塗装や仕上げモ ルタル等は撤去し,超音波センサが直接コンク リートに接するようにした。

測定後,測定箇所からコア採取(φ10cm)を 行い,圧縮強度および静弾性係数等を確認した。

4.2 予測結果について

図-11 に超音波測定結果から予測手法により 算出した圧縮強度予測値と採取したコアの圧縮 強度試験値を比較した結果を示す。

ASR が生じている A 構造物の予測結果は,概 ね実測値を捉えている。また,予測結果の誤差 が大きい測定箇所の原因としては,透過距離が 1m以上であり,学習した最大透過距離(コア長 90cm)を超えていること,また C 構造物は ASR が生じていないこと等が考えられる。

図-12 に静弾性係数について比較した結果を示す。

静弾性係数は予測結果が実測値に対して低め となっている。先の図-6 に示すように, ASR による膨張に従い,静弾性係数は圧縮強度より 大きく低下している。予測手法はこの傾向を学 習しているため, ASR を生じていないコンクリ ート構造物に対しては,実際の静弾性係数より 低めに予測したことが原因と考えられる。

その他予測誤差の原因としては,予測手法構 築のための基礎データとした円柱コア供試体に 対して,実構造物の形状差,コンクリート配合, 含水状態の違い等による伝播特性への影響,さ らには基礎データとした教師値が膨張率を介し ていること等もあることが予想される。

しかしながら圧縮強度,静弾性係数ともに, 供試体実験より蓄積したデータから,まったく 別の実構造物を予測したことからすれば,構築 した予測手法の有用性は高いことが確認できた。

5. まとめ

ASR が生じたコンクリート構造物を評価する ために,超音波法によりコンクリート物性を予 測する手法を検討した。本研究で得られた結果 を以下に示す。

(1) 実験結果から,透過法による超音波測定から 得られる各種伝播特性は ASR による膨張を 敏感に捉えており,膨張率と圧縮強度および

静弾性係数との関係から,超音波法により圧 縮強度および静弾性係数を直接評価できる 可能性が高い。

- (2)透過距離は、受振波振幅等で示される超音波の伝播エネルギー量や周波数成分など超音波伝播特性に大きく影響する。
- (3) 円柱コア供試体による実験結果をニューラ ルネットワークにより学習し、各種超音波伝 播特性から圧縮強度および静弾性係数を予 測する手法を構築した。実構造物による検証 結果、静弾性係数は過小評価する傾向にある が、ASR が生じたコンクリート構造物に対し ては、本予測手法の有用性は高い。

今後は予測精度向上を目的として,円柱コア と実構造物における各種伝播特性の違い,学習 する基礎データの拡張,予測手法における入力 データ項目の取捨選択などを検討する予定であ る。

参考文献

- 鎌田敏郎:コンクリートにおける弾性波の伝 播特性について,非破壊試験, Vol.53, No.9, pp.552-557, 2004.9
- 横田優ほか:弾性波法によるコンクリート材 料劣化評価に関する検討,弾性波法によるコ ンクリートの非破壊検査に関する委員会報 告およびシンポジウム論文集,土木学会, pp.281-288,2004.8