論文 腰壁・たれ壁が中心接合されたRC柱のせん断耐力の低下率と評価

當房和博*1・塩屋晋一*2・廣實亮太*3・吉留潤平*4

要旨:腰壁・たれ壁が中心接合された RC 柱のせん断耐力の低下率を明らかにする目 的で,既往の腰壁・たれ壁付柱試験体に対して,それらの開口内法高さの柱試験体の追 加実験を行い,柱のせん断耐力の低下率を実験により明らかにした。また,既に提案し ている腰壁・たれ壁付柱のせん断耐力の低下率の評価モデルを修正した。その結果,修 正したモデルで腰壁・たれ壁が中心接合された RC 柱のせん断耐力の低下率を概ね評価 できることを確認した。

キーワード:腰壁,たれ壁,せん断耐力,柱,中心接合,鉄筋コンクリート

1.はじめに

 \mathbf{A}

本研究は,腰壁・たれ壁が中心接合されたRC 柱のせん断耐力[®]に関するものである。既往の 腰壁・たれ壁付柱試験体に対して、それらの開 口内法高さを柱長さとする柱(以後,開口内法 柱)の追加加力実験を行い,腰壁・たれ壁付柱の せん断耐力が開口内法柱のせん断耐力に対して 低下する比率を明らかにした。そして、今回、明 らかになったせん断耐力の低下率の実験値を基 に 筆者ら⁹が既に提案しているせん断耐力の低 下率の評価モデルを修正した。

本論文は,それらの結果を述べる。

2.開口内法柱のせん断耐力に対する低下率

既往のせん断耐力式は,図-1(a)に示すよう に柱の上下端がスタブに支持された柱の実験 データに基づいて構築されている。この場合,柱 頭・柱脚での加力方向のせん断応力は柱幅全体に 分布し,開口内法区間でも柱幅全体で伝達する。 これに対して腰壁・たれ壁付柱では,図-1(b) に示すように壁端の断面で、壁厚の範囲から柱 幅に対して局所的に伝達し、開口内法区間のせ ん断破壊する領域でせん断応力の集中が生じる。 これにより腰壁・たれ壁付柱のせん断耐力は,開 口内法柱のせん断耐力に対して低下する。

						~~				H-0,	-277 F.T.	<u> </u>	0.0X I.	1.02							
		対象にする既往の腰壁・たれ壁付柱試験体											本実験の開口内法柱試験体								
			試験体	文献	D×B	ho	h	tw	hwb	hwt		Fc	σwy	σo	柱引張	pw	グルー	Fc	σwy	σo	柱引張
スタブ	No. 研究者	切咒伯	名称	番号	(cm)			M/QD	(N/mm ²)		主筋	(%)	プ記号	1)	(N/mm ²)		主筋				
	1 2		No.1-10 No.1-5-1	1) 2)			100	-	40	40	0.50	22.8 22.1	224		3-D10	0.13	H				0.540
	3 4 5		No.1-5-2 No.2-5 No7M	2) 2) 3)	20 × 20	20	120	5	60 40	40	0.50	19.8 25.3 26.6	265	3.92	3-D13	0.31	11	22.2			3-013
(a)開口内法柱	6 7		KT20-3.0 KT20-4.5	4) 4)	15×15	20	60	3 4.5	20	20	0.67	25.6 25.6	130	0.00	2-D10	0.28	Т2	27.4			2-D10
Æ	8 9 10	武田	<u>K I 20-6.0</u> No.1-9 No.1-4-1	4) 1) 2)			100	6	30	30		27.4 21.7 21.5	224		3-D10	0.40			285	3.92	
	11 12		No.1-4-2 No.2-4	2) 2)	20 × 20	40	120	5	40	20 40	1.00	20.9 25.3	185	0.00	3-D13	0.13	Т3	22.2			3-D13
297	13 14 15 16		No.1-8 No.1-3-1 No.1-3-2	5) 1) 2) 2)	20 × 20	60	100	5	20	20	1.50	14.7 27.0 21.5 20.9	380 224 185	3.92	3-D10 3-D10 3-D13	0.33	T4	22.2			3-D16 (3-D13*)
	17 18 19	広沢	No.2-3 0710CW- 0904CW-	2) 6) 6)	24 × 24	36	100	5	40 40	24	0.75	19.8 26.9	285	2.94	4-D10	0.10	н	27.4		2.94	4-D10
	20	塩屋	No.6	7)	11×20	50	110	6	30	30	2.27	24.4	526	2.49	4-D10	0.06	S	24.4	526	2.49	4-D10
注) D:柱せい, B:柱幅, ho:開口内法高さ, h:柱長さ, tw:壁厚, hwb:腰壁高さ, hwt:たれ壁高さ, (b) 腰壁・たれ壁付柱 M/QD:せん断スパン比, Fc:コンクリート圧縮強度, wy:帯筋の降伏強度, o:柱軸力の軸応力度,																					
図 - 1 応力の伝道	Ē	pw:‡ :	帯筋比 ,(3 本実験の	8-D13)開口	3*):T4 内法柱詞	のt 試験	さん圏 体で	新耐ナ 用い	つの補 た材	前正の 料強)計算て 度と諸	『用い i量に ^が	た鉄筋 対して	5量 ፲±1()%以」	∟の差	がある	材料強	渡と	諸量	
*1 鹿児島大学力	大学	院理	工学研	T究和	科建築	~	竱	攻	(]	Εź)									
*2 鹿児島大学]	C学	部建	築学科	助	敎授	J	博	(Ē	会員	Į)										
*3 鹿児島大学]	L学	部建	築学科	1卒	業																

表 - 1 対象試験体と試験体の構造因子

*4 戸田建設株式会社 (元鹿児島大学 大学院理工学研究科 大学院生)

図-2 対象試験体の形状と寸法

腰壁・たれ壁付柱のせん断耐力の評価に,既 往のせん断耐力式を準用する場合,開口内法柱 のせん断耐力に対する低下率を評価し,その低 下率を開口内法柱のせん断耐力の計算値に乗じ て評価するのが適切と考えられる。

3.対象にする腰壁・たれ壁付柱試験体

表 - 1 に対象にする試験体の一覧と諸構造因 子を示す。以下に実験概要を記す。

(a)武田の実験

図 - 2(a)に試験体の基本形状を示す。左右の柱, 基礎梁,上梁および腰壁・たれ壁からなる門形 フレームである。繰り返しの水平加力が行われ ている。柱には水平加力により変動軸力が生じ るが,その変動量は不明である。最大耐力がせ ん断破壊により決定した試験体を対象にした。 柱断面は20 × 20cmのシリーズと15 × 15cmシ リーズの2種類である。柱長さhは60cm,100cm, 120cmの3種類である。主変数は,腰壁・壁梁の 高さ hw・hwt,壁厚 tw,柱主筋量である。 (b)広沢らの実験

図 - 2(b)に試験体の基本形状を示す。試験体は 2体である。寸法は同じであるが柱のせん断補強 筋間隔が異なる。柱軸力は一定である。水平力に よる繰り返しの曲げせん断加力が行われている。 (c)塩屋らの実験

図 - 2(c)に試験体の基本形状を示す。試験体数 は1体である。扁平な長方形断面で, 腰壁・たれ 壁部分は壁梁となっている。柱軸力は一定で,水 平加力による繰り返しの曲げせん断加力が行われ ている。開口内法柱の加力実験は行われている。

4.開口内法柱のせん断耐力の推定方法

対象にする全ての腰壁・たれ壁付柱試験体の, 開口内法高さを柱長さとする開口内法柱のせん 断耐力を,加力実験により把握することは実験 の労力との関係で難しい。また,実験を行って も材料強度も完全に一致させることも難しい。 ここでは,対象にする試験体を,表-1の右側 に示すように柱断面と柱の開口内法高さで分類 して各グループの代表的な開口内法柱のせん断 耐力を加力実験により把握し,材料強度や柱主 筋量の違いによるせん断耐力の増減量は,既往 のせん断耐力式で補正する。具体的な補正方法 は6.1節で後述する。

5.開口内法柱のせん断破壊実験

5.1 試験体

図 - 3に試験体の基本形状を示す。柱の上下に 薄肉の角形鋼管で拘束したスタブを設け、その間ho を開口内法柱の試験区間とした。表 - 1の右側に試 験体の一覧と材料強度と構造因子の一覧を示す。 試験体数は各グループで1体として計5体とした。 ここではグループ名を試験体記号とする。

腰壁・たれ壁付柱試験体でせん断破壊してい ても,開口内法柱試験体ではせん断耐力が増加し て曲げ破壊する可能性がある。 表 - 1 に示しているように武 田の試験体では,グループ内 で柱主筋の配筋が2種類また は3種類に分かれている。せ ん断破壊を先行させるために 主筋量が多い配筋とした。T4 では,3-D16とした。また,広 沢のグループでも曲げ破壊す る可能性があったので高強度 鉄筋を使用した。

表 - 2 に使用材料の力学的 特性を示す。コンクリートは,各グループの代 表的な圧縮強度を参考に2種類の配合とした。 せん断補強筋4 の降伏強度も一種類である。 5.2 加力状況及び測定状況

図 - 4 に加力状況と測定状況を示す。二台の 水平ジャッキにより上下のスタブに取り付けら れた傾斜計の角度が等しくなるように制御しな がら,柱頭・柱脚間の水平変形を漸増させる繰り 返し加力を行った。軸力は,一定の加力とした。

水平変形の漸増は,変形履歴が各研究者のも のと同じになるようにし,腰壁・たれ壁付柱試 験体で生じる変形が,開口内法柱試験体で生じ るものとした。

5.3 荷重 - 部材角関係と破壊経過

図 - 5 に各試験体の水平荷重 - 部材角関係を 示す。また同図には最終破壊状況も示す。部材 角は,腰壁・たれ壁付き柱の柱長さhで除した ものである。また開口内法高さhoで除した補助 目盛りを同図に示している。

T1試験体は曲げひび割れを生じることなく対 角せん断ひび割れが生じ,その後,荷重が増加し てせん断破壊した。その後の負加力時も,同様 なせん断破壊が観察された。

T2試験体の正加力時は,曲げひび割れ発生後, 対角せん断ひび割れが発生すると同時に最大荷 重でせん断破壊した。負加力時も同様であった。

T3試験体の正加力時は,曲げひび割れ発生後, 対角せん断とは異なるせん断ひび割れが生じて

表-2 使用材料の力学的特性

		(応力の単位:N/mm2)									
	Туре	$E_{c}(\times 10^{4})$	сσв	_C ε _B (%)	試験体						
コンクリート	Ι	2.45	22.2	0.23	T1,T3,T4						
	Π	2.75	27.4	0.20	T2,H						
	種類	$E_{S}(\times 10^{5})$	$_{\rm s}\sigma_{\rm y}$	ε _y (%)	試験体						
	4φ	1.91	285	0.18	T1,T2,T3,T4,H						
鉄筋	D10	1.66	343	0.21	T2						
20(1)/3	D13	1.60	370	0.27	T1,T3						
	D16	1.69	370	0.22	T4						
	D10*	1 77	1020	0.78	н						

E_c:コンクリートのヤング係数, _{c B}: 圧縮強度,

。: 圧縮強度時のひずみ度, E_s: 鉄筋のヤング係数

、,:降伏強度,、,:降伏強度時のひずみ度,*は高強度鉄筋

最大荷重に達した。負加力時では対角せん断ひ び割れが発生して,その後,せん断破壊した。

T4 試験体は曲げひび割れ,曲げせん断ひび 割れ,付着割裂ひび割れの順で発生して付着割裂 破壊した。-2 サイクルで付着割裂ひび割れが発 生し,前サイクルの最大荷重を上回ることなく付 着割裂破壊した。正加力時では+3サイクルで付着 割裂ひび割れが発生して+2 サイクルのピーク時 の最大荷重を上回ることなく付着割裂破壊した。

H試験体は+2サイクルで曲げひび割れが発生した後,対角せん断破壊した。

6.腰壁・たれ壁付き柱のせん断耐力の低下率

6.1 せん断耐力の補正方法

腰壁・たれ壁付柱の構造因子の諸量に基づき, せん断耐力式でその開口内法高さの柱のせん断耐力を 算出する。これを c1Qsuo とする。本実験の構造因 子の諸量に基づき,開口内法柱試験体のせん断耐力 を算出する。これを c2Qsuo とする。前述の諸量の 違いにより c1Qsuo と c2Qsuo には差が生じる。 c2Qsuo に対する c1Qsuo の比を,補正する比率 と する。この を本実験の実験値eQsuo に乗じて,既往 の腰壁・たれ壁付き試験体の開口内法柱のせん断耐 力を推定する。これをmQsuo とし(1)式で表される。

 $mQsuo = \cdot eQsuo \qquad (1)$ $\Box \Box \overline{C} , = c1Qsuo / c2Qsuo$

せん断耐力式には荒川博士のmean式を用いた。 計算では試験体の寸法効果も考慮した。T4試験 体では付着割裂破壊により最大耐力が決定した ため,柱の引張鉄筋量を3-D16としてpt項によ りせん断耐力を補正するのは過剰であるので, 実験時の鉄筋ひずみを考慮して3-D13相当として 算定した。T4の最大荷重は,3-D13とした場合 の曲げ耐力の84%であった。

6.2 せん断耐力の低下率

表 - 3にせん断耐力に関する実験値と計算値 を比較して示す。実験値を補正した開口内法柱 のせん断耐力mQsuoに対する腰壁・たれ壁付柱 のせん断耐力の実験値eQsuの割合をせん断耐力 の低下率 su(=eQsu / mQsuo)とする。図 - 6 にせん断耐力の低下率 suと補正比率 の関係 を示す。ほとんどの試験体の低下率は0.7 ~ 0.9 の値になっている。特に点線で囲んだ試験体は, 開口内法柱のせん断耐力をほとんど補正する必 要が無かったもので,腰壁・たれ壁が中心接合 されていても柱のせん断耐力は開口内法柱のせ ん断力より低下することが確認される。また同 図には,材料強度,諸量の違いを全く補正しない でeQsuoによる低下率を黒点で示している。

7. せん断耐力の低下率の評価

7.1 既に提案している評価モデル⁹⁾

壁が中心接合された柱のせん断耐力の低下率の

図 - 6 せん断耐力低下率と補正比率の関係

原因は,2章で述べたように応力集中による。筆 者ら⁹⁾は,その応力集中の傾向を三次元弾塑性有 限要素解析により明らかにして,開口内法区間 においてせん断抵抗できるコンクリートの有効 な領域をモデル化している。図 - 7 にそのモデル を示す。その領域の幅は,壁端から開口中央高さ 方向に角度 で柱幅まで広がる。これに図 - 8 (a),(b)に示すように壁端から斜め上方に向くせ ん断破壊面が形成されるものとし,その破壊面の 全面積 A に対するせん断抵抗できる有効な面積 Aeの割合を低下率としている。その評価式を(2) 式に示す。破壊面の角度 は(3)式としている。

Type A:
$$B_1/\tan \psi$$
 $D \cdot \cot \phi < h_0 - B_1/\tan \psi$ の場合

$$\gamma_0 = 1 - B_1^2 / (B \cdot D \cdot \tan \psi \cdot \cot \phi)$$
 (2-1)

Type B: $D \cdot \cot \phi < B_1 / \tan \psi$ の場合

$$\gamma_0 = 1 - (2 \cdot B_1 - D \cdot \tan \psi \cdot \cot \phi) / B \qquad (2-2)$$

Type C:
$$h_0 - B_1 / \tan \psi \leq D \cdot \cot \phi < h_0$$
 の場合

$$\gamma_0 = 1 - \frac{B_1^2 + \{B_1 - \tan\psi(h_0 - D \cdot \cot\phi)\}^2}{B \cdot D \cdot \tan\psi \cdot \cot\phi}$$
(2-3)

Type D: $h_0 \leq D \cdot \cot \phi$ の場合

$$\gamma_0 = 1 - 2 \cdot B_1^2 / (B \cdot h_0 \cdot \tan \psi)$$
(2-4)

表 - 3 せん断耐力に関する実験値と計算値

既	往の腰壁	き・たれ壁付柱	試験体	本	せん断			
	No. 研究者		実験値		実験値	** - *	補正耐力	耐力の
No.		試験体名称	eQsu	クルーフ 記号	eQsuo	補止平 入	mQsuo	低下率
			(×10kN)	10.2	(×10kN)	л	(×10kN)	$\gamma_{\rm SU}$
1		No.1-10	10.78			0.90	13.4	0.80
2		No.1-5-1	10.78			0.98	14.7	0.73
3		No.1-5-2	10.53	T1	14.97	0.93	14.0	0.75
4		No.2-5	10.56			1.05	15.7	0.67
5		No7M	12.74			1.03	15.4	0.83
6		KT20-3.0	5.15			0.85	6.4	0.80
7		KT20-4.5	5.54	T2	7.58	0.85	6.4	0.86
8		KT20-6.0	5.98			0.88	6.7	0.90
9	武田	No.1-9	9.36			0.97	10.5	0.89
10		No.1-4-1	8.97			0.96	10.4	0.87
11		No.1-4-2	9.31	Т3	10.80	0.95	10.2	0.91
12		No.2-4	8.70			1.03	11.1	0.78
13		No.1	8.33			0.91	9.8	0.85
14		No.1-8	8.33			0.97	9.3	0.90
15		No.1-3-1	8.34	т4	0.50*	0.95	9.1	0.91
16		No.1-3-2	8.35		5.55	0.94	9.0	0.92
17		No.2-3	7.03			0.92	8.9	0.79
18	広沢	0710CW-	15.48	н	20.64	0.99	20.5	0.76
19		0904CW-	16.18		20.01	0.99	20.5	0.79
20	塩屋	No.6	3.98	S	5.40	1.00	5.4	0.73

eQsu: せん断耐力の実験値, 武田の試験体は柱一本あたりのせん断耐力 eQsuo: 本実験のせん断耐力の実験値, mQsuo: 補正された開口内法柱のせん断耐力 *: T4については付着破壊したため、せん断耐力は示した付着耐力以上の耐力となる。

図 - 7 せん断抵抗する柱領域と破壊面

ここにB: 柱幅, D: 柱せい, $B_1=0.5(B - B_0), B_0: 有効幅$ $\cot \phi = 1.8 - 2\sqrt{p_w \cdot \sigma_{wy}/c\sigma_B}$ かつ $\cot \phi \ge 1.0$ ここに, pw: せん断補強筋比

wy: せん断補強筋の降伏強度
 B: コンクリートの圧縮強度

(3)

図 - 9に解析による有効幅を再掲する。せん断応 力に基づいて柱の各断面で、せん断力を等価に評価 できる有効幅を算出している。そこではせん断耐力 を評価する場合は、この有効幅より多少、小さい幅 にした方が適切であるとして図 - 8のBoを壁厚tw としている。詳細は文献⁹⁾を参照されたい。

7.2 有効幅の修正

図 - 10に有効幅と壁厚および柱幅に関係する 寸法を示す。 ・Wは有効幅Boから壁厚twを差 し引いた片側の幅である。図 - 11に解析より得 られた をho/Dの関係で示す。hoは開口内法高 さでDは柱せいである。 が長方形断面で が 正方形断面である。長方形断面()の はho/D が小さくなると大きくなる傾向がある。また正 方形断面()の は長方形断面のデータを結ぶ 一点鎖線よりも多少,大きくなっている。解析

のデータは少なく更に解析が必要であるが, はho/Dが小さくなると増加する傾向がある。文 献⁷⁾では,開口内法柱の実験が行われて低下率 の実験値が明らかな試験体は,表-1のNo.20 (長方形断面柱)の一体だけであった。そこでは

が0.0, すなわち Boがtwとした場合の計算値が 実験値に適合した。前節で述べたようにせん断耐 力を評価するための有効幅を解析による幅より小さ くする必要がある。この試験体のデータを図 - 11 に で示す。これと同様に,他の試験体につい てもせん断耐力の低下率の実験値に適合するよ うに試行計算により求めた。その図 - 11 に の データを小さな黒点で示す。それらのデータに も はho/Dが小さくなると増加する傾向が確認 できる。下記の(4)式はそれらのデータに対して 求めた近似直線式である。

$$\alpha = 0.37 - 0.08 \cdot h_0 / D \tag{4}$$

$$t = t \stackrel{*}{=} \bigcup_{n=0}^{\infty} 0.3 \quad (4)$$

この を用いて(2)式の有効幅Boを(5)式とする。

 $B_0 = tw + 2 \cdot \alpha \cdot W$ (5) ここに,tw:壁梁厚,W = 0.5 · (B - tw)

図 - 13に全試験体の低下率の実験値とBolc(5) 式を用いた場合の計算値を比較して示す。横軸は 表 - 1の試験体番号である。横軸の上にはho/Dの 範囲も示している。 が実験値で ,白抜きの が計算値である。計算では開口内法高さが小さくな ると(2.1)式と(2.2)式の適用範囲外となる。今回の 計算では図 - 8 (c) (d)のような破壊面となる試験 体もあった。それらの低下率の式を図中に示す。白 抜きの記号は適用した式ごとに分類している。図中 の小さな白丸は図-6と同様に補正を行わなかっ たデータである。破線で囲んだデータは計算値と実 験値の差が大きく,原因を分析する必要はあるが, これらを除くと(4),(5)式と図 - 7のモデルを用い てせん断耐力の低下率を概ね評価できる結果になっ ている。No.6~No.8の試験体は壁厚tw だけが変化 している。図 - 12 にそれらの低下率と壁厚比の関 係を示す。壁厚比の変化に伴うせん断耐力の低下率 の増減量を計算値は説明できる結果となっている。

8.まとめ

- (1)腰壁・たれ壁が中心接合される場合でも,柱のせん断耐力は開口内法高さの柱のせん断耐力より低下し,その低下率は0.7~0.9であることが実験により確認された。
- (2)筆者らが既に提案しているせん断耐力の低下 率の評価モデルに(4),(5)式による増加幅を 考慮すると,腰壁・たれ壁が中心接合された 柱のせん断耐力の低下率を概ね評価できた。

参考文献

- , 2), 5)武田寛ほか:鉄筋コンクリート造腰壁・垂壁付きラー メンの耐力及び変形性状に関する実験的研究(その3.帯筋 量の少ない場合,及び,純ラーメンのh₀/D が異なる場合,日 本建築学会北海道支部研究報告集,No.54,pp.56 ~ 59,昭和56年 3月)(その4.柱主筋量が多い場合,日本建築学会北海道支 部研究報告集,No.55,pp.27 ~ 30,昭和57年3月)(その6.壁が 偏心する場合および壁厚が変化する場合,日本建築学会大会 学術講演梗概集,pp.1939 ~ 1940,昭和58年9月)
- 3) 武田寛ほか:鉄筋コンクリート造腰壁・垂壁及び有開口 壁の剛性に関する実験的研究,日本建築学会大会学術講演 梗概集,pp.455 ~ 456,1991 年 9 月
- 4) 武田寛ほか:鉄筋コンクリート造雑壁付き柱の耐力及び 変形性状に関する実験的研究,日本建築学会大会学術講演 梗概集,pp.1753~1754,昭和59年10月
- 6) 広沢雅也ほか:大変形下における RC 造腰壁・垂れ壁付柱の 耐震性能に関する実験的研究,第26回コンクリート工学年 次論文報告集, Vol.26, No.2, pp.235 ~ 240, 2004 年
- 7) 當房和博・塩屋晋一ほか:壁梁が偏心接合される RC 柱の せん断破壊性状とせん断耐力の低下率,コンクリート工 学年次論文集, Vol.27, pp187-192,2005
- 8) 日本建築学会:鉄筋コンクリート終局強度設計に関する 資料, pp.36, 1987年
- 9) 吉留潤平・塩屋晋一ほか:壁梁付き RC 柱におけるせん断応力集中とそれによるせん断耐力の低下率,コンクリート工学年次論文集,Vol.27,pp181-186,2005