論文 超高強度コンクリート(150MPa)に定着したあと施工アンカーの支持耐力 に関する実験的研究

酒井 悟^{*1}·杉山 智昭^{*2}·中野 克彦^{*3}·松崎 育弘^{*4}

要旨:本研究は、コンクリート強度に影響を受けるあと施工アンカーの支持耐力の評価を目 的としている。ここでは、有効埋め込み長さ・へりあき寸法を要因とする150MPa級のコン クリートへ定着されたあと施工アンカーの引き抜き実験を行い、非常に強度が高いコンクリ ートに定着した場合における、金属系あと施工アンカー拡張部の支圧挙動、および、接着系 あと施工アンカーのコンクリート・接着剤・鉄筋間相互の付着挙動について明らかにした。 そして、普通強度の実験結果と比較する事で、支持(引張)耐力設計式に対してコンクリート 強度が与える影響について検討を行った。

キーワード:あと施工アンカー,支持耐力,高強度コンクリート,埋め込み長さ,へりあき

1. はじめに

現在,金属系および接着系のあと施工アンカー は,設備機器の取り付け,内外装仕上げ工事や 耐震補強・補修など,数多くの用途に用いられ ている。これらあと施工アンカーの支持耐力は, コンクリート強度に依存し,現行の設計式では, そのコンクリート強度を重要な要因としている。 しかしながら,コンクリート強度があと施工ア ンカーの定着(支圧)・付着抵抗機構に及ぼす影響 については不明な点が多く残されている。さら に,近年の高層集合住宅等で多用されている高 強度コンクリートに対する施工性,その際の構 造性能評価についての検討も重要な課題である。

あと施工アンカーの支持耐力に対し,有効埋め 込み長さ(le)も重要な要因となる^{1),2)}。金属系ア ンカーでは,埋め込み長さが変化する場合の挙 動は十分に明らかではない。また,接着系アン カーの有効埋め込み長さは,7~10da 程度で設計 されており,通常の異形鉄筋の定着長さ30~40d と異なっている。その理由として,先付けの異 形鉄筋では,かぶり厚さを考慮して評価式が基 準化されているのに対して,接着系アンカーは, コーン状破壊の有効投影面積を考慮する程度で、 付着破壊に対するへりあき寸法の明確な規定が ないことが挙げられる。今後、構造用アンカー へ接着系あと施工アンカーを用いるためにも、 これら問題点を解決する必要がある^{3),4)}。

そこで、本研究では、コンクリート強度に影響を受けるあと施工アンカーの支持耐力の評価を目指し、非常に強度の高い Fc=150N/mm²級の コンクリートに定着された金属系および接着系 のあと施工アンカーの引張特性について明らか にする事を目的としている。さらに、その支持 耐力評価方法について検討する。

2. 金属系アンカーの支持耐力

2.1 実験概要

表-1に試験体一覧を図-1に使用した金属 系アンカーの形状(上段が拡張前,下段が拡張後) を示す。金属系アンカーの引張支持耐力につい て明らかにするために,変動要因は,金属系ア ンカーの種類と埋め込み長さ(拡張部先端までの 深さ)とした。使用した金属系アンカーは,使用 頻度の高い4種類(芯棒打ち込み式(C),内部コー

*1 新潟工科大学大学院 工学研究科建築学専攻 修士課程 (正会員)
*2 東京理科大学 工学部建築学科 助手 博(工) (正会員)
*3 新潟工科大学 工学部建築学科 助教授 博(工) (正会員)
*4 東京理科大学 工学部建築学科 教授 工博 (正会員)

表-1 金属系アンカー要因および結果一覧

		要	ᄢ	計算値						
No.	アンカー種類	ネジ部 サイズ	アンカー	埋め込み	最大	耐力	破壊	Ta2 ¹⁾		
			タト佺 レ[㎜] (穿孔径)	支ぐ ([mm])	何里 「kN]	変1立 「mm]	モード	[kN]		
1-1		M16	16	2D (32. 0)	42.1	0.46	S→C	4.8		
1-2	芯棒			3D (48.0)	45.9	1.41	$S \rightarrow C$ $S \rightarrow SP$	14.3		
1-3	打ち込み式(C)		(17)	4D (64. 0)	49.0	0.22		28.6		
1-4				5D (80. 0)	51.8	0.26	S→SP	47.7		
1-5	内部コーン		20	3D (60. 0)	63.2	0.91	S→C	22.3		
1-6	打ち込み式(CT)		(20.5)	5D (100. 0)	72.0	0.70	S→Y	74.5		
1-7	*#		21.5 (22)	2D (43. 0)	47.4	1.41	S→C	8.6		
1-8	本体 打ち込み式 (GA)			3D (64. 5)	51.2	2.90	S→C	25.8		
1-9				4D (86.0)	75.2	2.02	S	51.6		
<u>1-10</u>				5D(107.5)	64.8	2.62	S	86.1		
<u>1-11</u>	スリーブ		21.7	3D(65.1)	72.5	3.63	S→C	26.3		
<u>1-12</u>	打ち込み式(BA)		(22)	5D (108.5)	76.2	10.01	S→Y	87.7		
破壊形式・・・S:抜け出し破壊、C:コーン状破壊、SP:割裂破壊										
Y:アンカー破断 例)S→C:抜け出し後コーン状破壊										

ン打ち込み式(CT),本体打ち込み式(GA)),スリ ーブ打ち込み式(BA))とした。アンカー筋のネジ 部サイズは M16 で,埋め込み長さを 2D~5D(D: アンカー外径)と変動させた。使用したコンクリ ートは,図-2に示す Fc=150N/mm²級の超高強 度コンクリートである。

加力は、反力台をアンカーから埋め込み長さ 以上離して、自己反力型でアンカーに引張力を 与える形式とした。また、計測は、アンカーの 抜け出し変位について行った。

施工は、以下に示す状態であった。1) 一般的 な電動ハンマードリルを使用した穿孔では、特 に大きな問題は生じなかった。2)アンカー先端を 拡張するための打ち込み回数は、通常の4~7回 程度よりも非常に多く、100回を超えた試験体で は、図-3の様にアンカーが変形するほどであ った。しかしながら、すべての方式で拡張部は 十分に開いていない状況であり、超高強度コン クリートに対する施工は困難であった。

2.2 実験結果

図-3に金属系アンカーの破壊状況を示す。 破壊性状は,拡張部分の開きが十分でないため, 最大耐力以降にアンカーのすべりが生じて,抜 け出す性状であった。また,多くの試験体では, アンカーの拡張部がコンクリート表面に近い位 置まで抜け出した後に,非常に浅いコーン状破 壊,または,割裂破壊となった。

図-4に埋め込み長さを変動要因とした荷重 P-抜け出し変位 δ 関係を示す。初期剛性は、埋め込み長さに関わらず同様で、 $0.2\sim0.3$ mm で抜

金属系アンカー形状 図-1 σ [N/mm²] 引張 圧縮 ヤンク バ 割裂 係数^{※1} Fc=150N/mm 強度 強度 ッ $Fc \times 10^4$ σB 100 チ σt $[N/mm^2]$ $[N/mm^2]$ $[N/mm^2]$ 4.53 166 6.58 1 c=27N/mm 2 161 5.56 4.47 ε[μ] ※1: σB/3 時割線剛性 1000 2000 3000 4000 0

図-2 コンクリート材料試験結果

図-3 金属系アンカー施工・破壊状況

け出し変形が大きくなる(滑り出しが生じる)性 状となり,最大耐力に至っている。最大耐力は, 埋め込み長さの上昇に伴って若干上昇するが, 頭打ちの性状であった。そして,最大耐力以降, 摩擦抵抗の様な変形特性を示しながら緩やかに 耐力が低下する性状であった。図-5にアンカ ー種類を変動要因とした P-δ関係を示す。ばら つきがあるものの,アンカー種類に関わらず, 初期剛性は、同様な傾向であり、最大耐力は、 スリーブ,内部コーン,本体,芯棒打ち込み式 の順に大きくなっている。

2.3 支持耐力評価式の検討

図-6に実験の最大耐力と計算値の比較を示 す。計算値は、文献1)の方法を用いており、 計算値は、コーン状破壊に対する耐力式(Ta2)に ついて示した。図のように、2~4D まで実験値 が計算値よりも大きいものの、計算値の上昇に 対応して実験値は上昇していない。この様に, 超高強度コンクリートによって破壊モードが抜 け出し破壊に移行した影響が顕著に認められる。

3. 接着系アンカーの支持耐力

3.1 実験概要

表-2に試験体要因および結果・計算値一覧, 図-7に試験体要因図を示す。ここでは、コー ン状破壊と付着破壊が混在する状況下における, 接着系アンカーの引張支持耐力を明らかにする ために実験を計画した。共通要因は母材コンク リート(強度: Fc=150N/mm²)とアンカー筋で,ア

表-2 接着糸アンカー要因および結果・計算値一覧											目出	詛			
	試験体要因				実験結果		計算值''_[min(Ta2, Ta3)]						45	46	
No.	アンカー 種類	有効埋め	へりあき		最大耐力		破壊	低減なし 1回低減5		<u> </u>	。) 2回低減。	し 減 の		그리나	
		込み長さ le[mm]	面	寸法C [mm]	荷重 [kN]	変位 [mm]	モード	Ta [kN]	破壊 モード	Ta [kN]	破壊 モード	Ta [kN]	破壊 モード		間間
2-1		7da (133mm)	1面	75	142	1.73	С	154	C	154	C	—	-		
2-2				150	172	2.72	С	188	C	_		-	—		
2-3			2面 (隅面)	75	111	0.37	С	105	C	105	C	105	С		
2-4				150	174	1.82	С	185	C	_	-	-	-	インジェ	ガラス
2-5			Center	-	197	1.02	С	185	C		-	Ι	-	クション	タイプ
2-6	<u>-6</u> -7 ガラス管 -8 タイプ	14da (266mm)	1面	75	200	1.30	В	439	В	282	В	Ι	-	ダイノ	
2-7				150	280		-	439	В	344	В	Ι	-	アンカー筋	運め込
2-8) 2面 (隅面)	75	168	1.58	В	292	C	282	В	181	В	_ ^	
2-9	(G)			150	242	3.28	B*	402	C	344	В	269	В	C	
2-10			Center	-	280	—	—	439	В	—	—	_	—	- · 🍝 - ·	-
2-11		21da (399mm)	1面	75	280		-	659	В	392	В	Ι	-	7	/カー筋
2-12	3			150	280		-	659	В	453	В	Ι	-	7.2	
2-13			2面 (隅面)	75	226	5.45	B≫	560	C	392	В	233	В	1面へりあき	2
2-14				150	280	_	—	659	В	453	В	312	В		~
2-15			Center	-	280	—	—	659	В	—	-	—	-	図 =	お話は
2-16		7da (133mm)	1面	75	120	0.72	С	154	C	154	C				へ向大 ドキ
2-17				150	150	0.94	С	188	С						
2-18			2面 (隅面)	75	115	1.87	С	107	С	107	C	107	С		Щ 13-
2-19				150	138	1.27	С	188	С	_	_	_	_	ロードセル	r H r
2-20			Center	_	148	1.57	С	188	С	_	_	_	_		
2-21		14da (266mm)	da Gmm) (隅面) Center	75	260	5.02	B*	446	В	286	В	_	_	F	Ŧ,
2-22	インンエ			150	267	6.03	B*	446	В	349	В	_	—		
2-23	クション			75	154	1.58	В	297	С	286	В	183	В	加力用鉄骨	
2-24	$\frac{\gamma}{1}$			150	280	_	—	408	С	349	В	273	В		┿╋╤┷╴╻
2-25	(1)			_	264	5.24	B*	446	В	_	_	—	_		
2-26		21da (399mm)	1 =	75	248	3.09	B*	669	В	398	В	—	_		╨┰ぺ
2-27			1 面 1da 2 面 (隅面)	150	270	_	_	669	В	460	В	_	_		-ll-ll
2-28				75	216	6.22	B*	568	Č	398	B	236	В		
2-29				150	280	_	_	669	B	460	B	317	B		- i X
2-30			Center	_	280	—	—	669	B	—	_	—	_		*
07	ンカー筋	•••D19 (SF	D685. c	τv=749	$\sqrt{(mm^2)}$	〇穿子	L径···(avT-£	e : 25mr	n. I-	Type :	24mm	L		家

○破壊モード・・・C:コーン状破壊、B:付着破壊(付着割裂破壊含む)、B※:アンカー筋降伏後の付着破壊(付着割裂破壊含む),一:載荷限界(≒破断強度)まで加力
 ○計算値の破壊モードは、Ta2で決定の場合コーン状破壊 C、Ta3で決定する場合付着破壊 B

ンカー筋は D19(SHD685)を使用した。

変動要因は, 接着タイプ, 有効埋め込み長さ およびへりあきの3種類とした。接着タイプは, ガラス管タイプ(G-Type)およびインジェクショ ンタイプ(I-Type)の2種類とした。G-Typeは,穿 孔後にガラス管カプセルを挿入し、鉄筋を回転 打撃させながら定着するタイプで, I-Type は, 穿 孔後に接着剤をあらかじめ注入してから鉄筋を 挿入して定着するタイプである。なお、接着剤 の樹脂には、双方ともエポキシアクリレート系 の材料を使用している。有効埋め込み長さ(le)は, 7da(133mm, da:アンカー筋径), 14da(266mm) および 21da(399mm)の 3 水準とした。へりあき は、へりあき面とへりあき寸法が要因で、へり あき面は片側のみへりあき面が小さい『一面へ りあき』と90度の隅での定着を想定した『二面 (隅面)へりあき』の2水準, へりあき寸法(C)は, 75mm と 150mm の 2 水準とした。これら変動要 因を組み合わせ,計30体の加力を行った。なお、 使用したコンクリートの材料特性は, 図-2に

示した値である。

図-8に加力・計測装置図を示す。加力は, 架台鉄骨をアンカー筋から200mm以上離して設 置した自己反力型の単調引き抜き載荷で行った。 載荷の最大荷重は,アンカー筋破断直前の280kN (=Psm)とし,変位の計測は,架台上部からアン カー筋に取り付けた治具を使用して抜け出し変 位($\delta = (\delta 1 + \delta 2)/2$)について行った。

3.2 実験結果

図-9にコンクリートブロック破壊状況,図 -10に破壊後のアンカー筋状況を示す。破壊状況は、コーン状破壊と付着破壊が混在する性状であった。破壊モードは、有効埋め込み長さ le が7da と短い試験体でコーン状破壊、14da および21da では、コーン状破壊を伴う付着破壊(一部 付着割裂)と分類される。その付着破壊の区間は、 G-Type の場合、接着剤の樹脂が鉄筋に付着しているため、樹脂とコンクリートの間で破壊し、 I-Type の場合、横脂が母材コンクリートに付着しているため、鉄筋と樹脂の間で破壊していると 推測される。図-11にコーン状破壊区間長さ(lc) と有効埋め込み長さ(le)の関係を示す。le に関わ らず、コーン状破壊の区間は、50~133(7da)mm とほぼ一様の長さであり、この傾向は、普通コ ンクリートと同様の性状であった⁶⁾。

図-12に荷重 P-抜け出し変位 δ 関係を示す。 図(a)は、有効埋め込み長さ le とアンカー種類を 変動要因とした図である。初期剛性は、le、接着 タイプ(I-Type・G-Type)に関わらずほぼ同様の性 状である。また、最大耐力時の変位は、最大耐 力が大きいほど大きく, I-Type よりも G-Type で 最大耐力が大きい。図(b)は、へりあき面および 寸法を変動要因とした図である。へりあき面が 少ないほど、また、寸法が大きいほど最大耐力 が大きくなり、ばらつきがあるものの、最大耐 力が大きい程,初期剛性が高くなる傾向が見受 けられる。図(c)は、同一要因の試験体について 普通コンクリート(Fc= 27N/mm²)の実験結果⁶⁾と 比較した図である。初期剛性については、強度 の違いによる差異が明確に見られないが、強度 の上昇にともない、最大耐力は上昇している。

図-13 に実験最大耐力 e Pmax と有効埋め込 み長さ le の関係を示す。図のとおり,支持耐力 は,有効埋め込み長さが長くなるほど,ほぼ直 線的に上昇する傾向である。また,2 面(隅面)C =75mm で最大耐力が最も小さく,1 面 C=75mm, 隅面 C=150mm,1 面 C=150mm となるにつれ て最大耐力が大きくなっている。つまり,へり あき面が少ない場合,または,へりあき寸法が 大きい場合で最大耐力が上昇する傾向である。

3.3 付着抵抗状態(歪み分布)

図-14 に I-Type のアンカー筋歪み分布を示す。 歪みの勾配は引き抜き端側が最も大きく,荷重 が増加するにつれて,奥側の歪み勾配が大きく なっている。したがって,引張抵抗は,引き抜 き端側の抵抗力(付着力)が失われるにつれ,さら に奥側の区間が抵抗するといえる。また,同一 荷重時において,有効埋め込み長さに関わらず, 各区間,特に引き抜き端の勾配がほぼ同様の性 状となっている。この性状は,普通コンクリー

図-14 アンカー筋歪み分布(I-Type,1面C=150)

トの特性と同様であるが,同一荷重時の引き抜 き端部付着抵抗(付着応力)は,超高強度コンクリ ートで大きくなっている。

3.4 支持耐力評価式の検討

図-15 に計算の最大耐力算出方法,表-2中 に計算結果一覧および図-16 に実験最大耐力と 計算値の比較を示す。実験では,破断荷重の直 前まで加力をしているため,計算値は,コーン 状破壊で決定される Ta2 と付着破壊で決定され る Ta3 の両者の小さい値を用いることとした。 なお,Ta2 は,有効水平投影面積 Ac を用いてへ りあき寸法の考慮を行っている。また,Ta3 につ いては,へりあきを考慮した低減がなされてい ないが,文献 5,6)で提案しているへりあきと埋 め込み長さの関係による低減係数を用いて,計 算を行うこととした。低減の際,2面(隅面)へり あきでは,さらにもう一回低減係数を乗じた場 合についても図・表中に示した。

図-16 に示すように、コーン状破壊した試験 体の場合(le=7da:図中白抜き),比較値が 0.73 ~1.05 と若干低い比較値で分布している。した がって、コーン状破壊では、コンクリートの割 裂強度を概ね評価していると考えられる。

一方,付着破壊(le=14, 21da)の場合,へりあ きによる低減を一回行った実験値と計算値の比 較値(図中灰色)は, 0.6~0.9 程度の分布となって いる。一面へりあきはやや低い分布であるが、2 面(隅面) へりあきの場合, 0.6 付近を中心に分布 しており、特に計算値が大きく評価されている。 この隅面へりあきの試験体に関して 2 回低減係 数を乗じた場合(黒塗り),比較値が1.0近くにな るが、一面・Center の試験体の分布よりも低減 がやや過大となる傾向である。これらより、超 高強度コンクリートに定着された接着系アンカ ーは,付着強度がやや大きく計算されること, また、隅面に定着されたアンカーの耐力低減方 法については、検討が必要であるといえる。

4. まとめ

150N/mm² 級の超高強度コンクリートに定着 したあと施工アンカーの構造性能について引き 抜き試験を行うことで以下の知見を得た。

- 1)金属系アンカーの拡張部は, 普通コンクリート の場合と同様には拡張せず,施工は困難である。 このため,破壊状況は引き抜ける特性となり, 埋め込み長さが長くなっても,支持耐力の上昇 は小さく頭打ちの傾向となる。このため、既往 の評価式との適合性が十分でない。
- 2)接着系アンカーの破壊状況は、普通コンクリー トと同様に引き抜き端のコーン状破壊と定着 奥側の付着(付着割裂)破壊が生じる性状であ った。その引張抵抗は,引き抜き端側が大きく, 抵抗力(付着力)が失われるにしたがって、更に 奥側の区間が抵抗する傾向である。

実験の接着系アンカー支持耐力は,既往の評価 式の計算値と比較して,コーン状破壊の場合に やや小さく、付着破壊の場合は小さい。

計算值 Ta=min(Ta2, Ta3)[kN]

図-16 金属系アンカー要因および結果一覧

謝辞

0

本研究を行うにあたりサンコーテクノ株式会社 の皆様,東京理科大学大学院生の山元雄亮君の 協力を得ました。ここに感謝の意を表します。

参考文献

- 1) 日本建築防災協会:既存鉄筋コンクリート造 建築物の耐震改修指針・同解説, 2001
- 2) 日本建築学会:各種合成構造設計指針・同解 説, 1985
- 3) 村山、松崎他:接着系あと施工アンカーの付 着特性に関する実験研究一へりあき寸法が 付着特性に及ぼす影響,日本建築学会大会学 術講演梗概集, C-2pp.645-646, 2000
- 4) 中野, 松崎: 構造用接着系あと施工アンカー のせん断設計法に関する考察,日本建築学会 大会学術講演梗概集, C-2pp.653-654, 2002
- 5) K.Nakano, Y.Matsuzaki : Structural Performance of Post-installed Bonded Anchors, Bond in Concrete -from research to standards-, pp.455 -462, 2002
- 6) 酒井,杉山,中野,松崎他:定着長さとへりあき 寸法が接着系あと施工アンカーの引張特性 ヘ与える影響に関する実験的研究,日本建築 学会大会学術講演梗概集, C-2pp.49-50, 2004