論文 支点近傍に衝撃荷重を受けたPC梁の残存耐荷性能評価

黒田 一郎^{*1}·畑野 真吾^{*2}·古屋 信明^{*3}·中村 佐智夫^{*4}

要旨:本研究は,支点近傍に衝撃荷重を受けてせん断損傷したPC梁にどれだけの耐荷性能が 残っているか,を実験的に検討したものである。具体的には,重錘を所定の高さからPC梁に 1回だけ落下させる単一重錘落下をまず行ってPC梁にせん断損傷を与え,その後PC梁が終局 状態に至るまで同一の支持条件で静的載荷を続ける方式(2段階載荷実験)と,衝撃を繰返 し与える方式とを,重錘によって梁に与えられたエネルギーとPC梁変形量の関係の観点から, 比較した。

キーワード: PC 梁, 衝撃荷重, せん断損傷, 残存耐荷性能, 残留変位

1. はじめに

国土の約70%が山岳部であり,温暖湿潤気候に 属する我が国で落石から道路や鉄道を守るため に落石防護構造物がある。落石覆工は、その中 で最も効果的で信頼性の高い構造物であり、近 年、種々の利点からPC製落石覆工が多く建設さ れている。通常, 落石覆工に用いられるコンク リート梁は,通常のコンクリート梁と同様に, 脆性的でなく、

十分に変形させた後に破壊させ るべく、曲げ破壊がせん断破壊に先行するよう に設計されるが^{1), 2)}, 衝撃荷重の載荷位置が支承 近傍であった場合,荷重そのものは大きくなる が,破壊モードが曲げからせん断に移行して脆 性的であった事例も報告されている³⁾。また,破 壊にまで至らなくともせん断損傷を受けたコン クリート梁が有する残存耐荷性能を知ることは, 実務上、大変重要である。

その評価方法には種々あるが,実験的手法と して,損傷したコンクリート梁が終局状態に至 るまで,繰返し衝撃載荷実験を行う方法と静的 載荷実験を行う方法とがあり,現象の本質から すれば前者が適当と考えられるが,実験の簡素 さ,実験の再現性・落下高さの再検討の難しさ という点から,重錘落下衝撃実験後の静的載荷 実験方式が多用されてきた^{4),5),6)}。だが,衝撃荷 重を受けた後の残存耐荷性能をこの2段階載荷 実験(衝撃載荷と静的載荷)によって評価しう るか,という検証は十分になされていない。

そこで本研究は、せん断破壊するPC梁を対象 として、繰返し衝撃載荷実験および2段階載荷実 験を行い、重錘によってPC梁に与えられたエネ ルギーとPC梁変形量の観点から両方式を比較す る。

2. 実験概要

2.1 実験供試体および載荷板

図-1(a),(b)にプレテンションPC梁の形状寸 法および断面寸法を,表-1に材料諸元を示す。 PC鋼より線(導入緊張力66.6kN/本)の定着を十 分確保するために,供試体の全長は2000mmとし, さらに梁両端に厚さ12mmの定着鋼板を設けて いる。PC鋼より線は2本ずつ2段に分けて計4本設 置している。スターラップは,梁全長にわたっ てD6鉄筋を100mm間隔で19本配置している(せ ん断補強筋比0.42%)。この量は,通常設計され る落石覆工PC梁においてせん断補強筋が一番少

*1 防衛大学校 建設環境工学科助教授 工博 (正会員) *2 防衛大学校 理工学研究科前期課程学生 (正会員) *3 防衛大学校 建設環境工学科教授 工博 (正会員) *4 日本サミコン(株) 技術部

ない部類に相当する。また,実在する落石覆工 上面には敷砂等の緩衝材が配されており,これ らのサンドクッション効果によって落石による 衝撃荷重が分散する。この分散効果による荷重 分布範囲を一定の幅に限定するために,ロード セルとPC梁の間には梁軸方向長さ75mm・幅 150mm・厚さ25mmの鋼板(SS400)(以降,載荷 板と呼ぶ)を挟んだ。

2.2 実験概要

(1) 衝撃載荷実験

図-2に実験要領を示す。質量0.3tの重錘を繰返し落下させて終局状態に至らしめる方式と、 PC梁に1回だけ重錘を落下させる単一重錘落下 方式(終局にはならない)を用いる。載荷点部に は荷重計測用のロードセル,さらにその下に前

表-1 材料諸元

材料名	項目	数值等	
	水セメント比(%)	35	
	セメント(kg/m ³)	389	
	7大(kg/m ³)	136	
コンクリート	細骨材(kg/m ³)	752	
	粗骨材(kg/m ³)	1178	
	載荷実験時の	60.2	
	圧縮強度(N/mm ²)	00.2	
PC鋼より線	0.2%永久伸び強度	1750	
(SWPR7AN)	(N/mm^2)	1759	
スターラップ, 組立筋	降伏強度	200	
D6鉄筋(SD295A)	(N/mm^2)	300	

表-2 計測項目および計測器の性能・諸元

_	載荷	方式	計測項目	計測器	性能・諸元
			荷重	ロードセル	容量:1000kN
	衝	撃	亦位	レーザー式	測定範囲:300±100mm
			友区	変位計	応答周波数:915kHz
			荷重	ロードセル	容量:1000kN
	静的	的	亦位	喜咸 康亦位計	測定範囲:100mm
_			友世	同您反复世前	応答周波数:12kHz

述した載荷板を設置した。重錘先端形状は半径 100mmの円柱形で,その最先端部は平坦である。

載荷スパンは、PC梁を確実にせん断破壊させ るために⁴⁾250mm+750mmの左右非対称(せん断 スパン比:a/d≒1.52)とした。本実験では支点 の近傍での破壊が予想されるため、PC鋼より線 定着部の影響を排することを目的として支点か らの張出しを長め(500mm)に確保した。せん断破 壊に至るまでの変形量は曲げ破壊と比べて小さ いため、この張出し部の慣性力による影響は小 さいと考えられる。また、両支点部においては、 半円形断面支承の上にPC梁を載せ、梁の上面を 跳上がり防止用治具で鉛直方向に拘束しており、 回転と梁軸方向の水平移動は自由なローラー支 持の状態である。

繰返し衝撃載荷実験の1撃目の重錘落下高さ (H=1.1m, 1.4m, 1.7m)は、既往の研究⁴⁾や単 一重錘落下衝撃実験の結果を参考にし、ある程 度のせん断ひび割れが発生するであろうとして 設定した。2撃目以降の重錘落下高さは、2~3 撃程度で終局に至るであろうという見通しで 0.35mの一定値とした。載荷停止は、PC梁の損傷 状態を目視で判断して決めた。

(2) 重錘落下衝撃実験後の静的載荷実験

静的載荷実験は、(1)で述べた単一重錘落下衝

表-3 実験ケースおよび結果の一覧

(a) 繰返し衝撃載荷実験

	シリーズ供試体名		繰 返 し 衝 撃 載 荷 実 験							
シリーズ			Н	P _{MAX}	δ _R	Σδ _R	ED	ΣED	載荷後	
			(m)	(kN)	(mm)	(mm)	(kN∙m)	(kN∙m)	状態	
	75R-1.1H	1撃目	1.1	568.4	3.4	3.4	0.90	0.90	Δ	
		2撃目	0.35	194.7	2.7	6.1	0.48	1.38	Δ	
		3撃目	0.35	258.7	2.5	8.6	0.52	1.90	Δ	
		4撃目	0.35	NA	1.0	9.6	NA	NA	×	
	75R-1.4H	1撃目	1.4	755.0	4.7	4.7	1.31	1.31	Δ	
NC/rep.		2撃目	0.35	261.4	5.2	9.9	0.52	1.83	Δ	
		3撃目	0.35	263.1	5.6	15.5	0.53	2.36	Δ	
		4撃目	0.35	226.1	10.7	26.2	0.57	2.93	×	
	75R-1.7H	1撃目	1.7	763.0	8.5	8.5	2.01	2.01	Δ	
		2撃目	0.35	251.2	2.6	11.1	0.34	2.35	Δ	
		3撃目	0.35	231.2	4.3	15.4	0.64	2.99	x	

(b) 2段階載荷実験および静的載荷実験

		衝撃載荷実験					静的载荷実験			
シリーズ	供試体	Н	P _{MAX}	δ _R	ED	載荷後	P _R	δs	Es	載荷後
	名	(m)	(kN)	(mm)	(kN∙m)	状態	(kN)	(mm)	(kN•m)	状態
	75-1.1H	1.1	583.5	5.2	1.41	Δ	139.4	3.0	0.24	×
NC	75-2.0H	2.0	663.2	7.2	2.12	Δ	92.9	4.8	0.21	×
	75-2.3H	2.3	698.8	12.9	2.83	×	(衝雪	隆載荷に	て完全に	:破壊)
Static	75S						365.0	7.8	3.60	×

撃実験により損傷を受けたPC梁の残存耐荷性能 を把握するために,静的載荷装置を用いて行っ た。支持条件や載荷板は衝撃実験と同一であり, 衝撃載荷後の残留変位が10mm以下のPC梁に対 して行った。その理由は,衝撃実験時の目視観 察により変位10mmを越えたPC梁は全て,載荷点 と支承を結ぶ面に沿ったコンクリートがある幅 で完全に破壊し,この分離面でのずれ量はおお よそ10mm以上にも達し,既にせん断破壊の終局 状態に至っていると認められたからである。

2.3 計測項目および実験ケース

表-2に計測項目および計測器の性能・諸元を 示す。衝撃実験では,載荷点荷重はロードセル により,載荷点下縁の鉛直方向変位はレーザー 式変位計により計測した。データは波形記憶装 置で収集・変換し,ローパスフィルター1000Hz でノイズカットを行い,これを基礎データとし た^{7),8)}。

静的載荷実験では、載荷点での荷重をロード セルで測定し、載荷位置におけるPC梁上縁の鉛 直方向変位を高感度変位計で測定した。せん断 ひび割れは載荷板の支点側端部と支点を結ぶよ P_{MAX} :最大衝撃力 δ_R :衝撃載荷時の残留変位 $\Sigma \delta_R$:繰返し衝撃載荷による 累積残留変位 E_D :衝撃載荷時の吸収エネルギー ΣE_D :繰返し衝撃載荷による 累積吸収エネルギー P_R :静的残存耐力 δ_S :静的載荷で P_R に達した時の変位 E_S :静的載荷時の吸収エネルギー (この表では δ_S に達するまでの値) 載荷後の状態: Δ :せん断ひび割れ \times :せん断破壊 NA:データ採れず 斜線部:測定せず

H: 重錘の落下高さ

図-3 衝撃力-時間関係

うに入るため、載荷点上縁と下縁の変位は同一 であるとみなす。

表-3(a),(b)に実験ケースおよび結果の一覧 を示す。供試体名の前半(ハイフン記号より前) はシリーズ(載荷方法)を表わし,"75R"が繰返 し衝撃載荷,"75"が2段階載荷である。そして, 後半の数値は重錘落下高さ(繰返し衝撃載荷の 供試体では1撃目の重錘落下高さ)をメートル 単位で表わしている。なお,供試体名75Sは無損 傷のPC梁に対して静的載荷を行なった供試体で ある。以降,繰返し衝撃載荷をNC/rep.シリーズ, 単一衝撃載荷をNC(No-Cushion)シリーズ,無 損傷のPC梁(75S)に対する静的載荷をStaticシ リーズと呼ぶことにする。

3. 実験結果

3.1 最大衝擊力P_{MAX}

衝撃カー時間関係の一例(75R-1.1H供試体) を図-3に示す。また、各供試体の衝撃力のピー クの値を最大衝撃力として表-3(a)、(b)にまと めて示す。衝撃力測定値の測定精度は、衝撃力 を時間で積分した値、即ち梁が受けた力積と重 錘運動量とを比較することによって確認した。 1ケース(75R-1.1H供試体の4撃目)を除いて力 積と運動量がほぼ一致しており、一致しなかっ たケースについては表-3(a)、(b)中のP_{MAX}の欄 にNA(:データ採れず)と表記している。

3.2 繰返し衝撃載荷実験の諸量-累積落下高さの関係

図-4(a), (b)に諸量-累積落下高さ(∑H)の 関係を示す。記号の形は1撃目の落下高さHを示 し(□,■:H=1.1m。◇,◆:H=1.4m。△,▲: H=1.7m。),色は損傷状態(白抜き:せん断ひび 割れ発生,黒塗り:完全にせん断破壊)を示す。

図-4(a)は、最大衝撃力P_{MAX}と∑Hを比較した ものである。どのケースも1撃目の衝撃載荷で せん断ひび割れが入り、その後の繰返し衝撃載 荷で200~300kNの最大衝撃力P_{MAX}を受けた後、せ ん断破壊の終局状態に至ったことがわかる。 NC/rep.シリーズの1撃目のP_{MAX}は、NCシリーズ においてPC梁をせん断破壊させるP_{MAX} (698.8kN:75-2.3H供試体)に匹敵しているが、 NC/rep.シリーズではPC梁は完全に破壊するこ となく、さらに2撃目以降への残存耐力を残し ていた。即ち、衝撃力のピークの値である最大 衝撃力P_{MAX}はPC梁が完全に破壊するか否かとは 密接な関係を持っていないことが明らかである。

図-4(b)は、残留変位の累積値($\sum \delta_R$)と $\sum H$ を比較したものである。どのケースでも、1撃 目で大きな変位が与えられ、載荷回数を重ねる ごとに $\sum \delta_R$ を伸ばして終局状態に至っている。

3.3 2段階載荷実験の残存耐カー落下高さ関係

図-5に2段階載荷実験によって得られた,静 的残存耐力P_Rと衝撃時の重錘落下高さの関係を 示す。また,75S供試体の結果も描き入れてある (H=0mに)。落下高さが上がるほど初期損傷は 激しくなるため,静的残存耐力P_Rが小さくなっ

ている。3.4 2段階載荷方式(NC)と繰返し衝撃載荷方式(NC/rep.)の比較

3.2節の結果を踏まえ、衝撃力の瞬間的なピー クである最大衝撃力P_{MAX}ではなく、衝撃力一変 位関係(図-6に一例を示す)において衝撃力を 変位で積分することによって算出される吸収エ ネルギーと残留変位との関係に着目して、NCシ リーズの静的載荷実験結果とNC/rep.シリーズの 2撃目以降の衝撃載荷実験結果を比較する。せ ん断破壊は大きな変位、変形を伴わずに生じる から、エネルギーに注目することは意味がない という考え方もあるが、この吸収エネルギーを 導入することによって、衝撃載荷と静的載荷で

それぞれにPC梁に加えられた入力を,統一的に 議論することが可能となる。

NCシリーズ(2段階載荷方式)では衝撃によ る残留変位δ_Rをその後の静的載荷時の変位に加 算したものを、NC/rep.シリーズ(繰返し衝撃載 荷方式)では各回の衝撃毎に発生した残留変位 δ_{R} を合計したものを累積変位 $\Sigma\delta$ と定義し、これ と梁の累積吸収エネルギー∑Eとの比較を試みる。 累積吸収エネルギーΣEとしては、NCシリーズで は衝撃載荷時の吸収エネルギーEnを静的載荷時 の吸収エネルギーに加算して求め, NC/rep.シリ ーズでは各回の衝撃毎の吸収エネルギーEpを合 計して求めることとする。その結果を図-7(a) ~(c)に示す。図において破線は無損傷のPC梁 (75S)に対する静的載荷実験(Static)を示す。 丸印はNCシリーズ(75-1.1H, 75-2.0H)の衝撃 載荷の結果を、丸印から伸びる実線は衝撃載荷 後の静的載荷の結果を示す。それ以外はNC/rep. シリーズの結果(記号は図-4と同じ)である。

図-7(a)は、NC、NC/rep.の1撃目の結果およ びStaticを比較する。NCの衝撃載荷時および NC/rep.の1撃目の $\sum E - \sum \delta$ 関係を示すプロット はStaticの $\sum E - \sum \delta$ 関係を示す破線の近傍に分布 しており、このことから、PC梁への1撃目衝撃 時の吸収エネルギーと残留変位の関係は無損傷 のPC梁の静的載荷実験(Static)でとらえること ができると考える。

次に図-7(b)では、2撃目以降を含めた NC/rep.シリーズとStaticを比較する。2撃目以降 のプロットは、破線よりも下方に位置しStaticか ら離れてしまっている。

最後に図ー7(c)で、NCシリーズの衝撃後の静 的載荷実験とNC/rep.シリーズの2撃目以降を比 較する。NC/rep.シリーズの $\Sigma E - \Sigma \delta$ 関係を示すプ ロットは、NCシリーズの衝撃後静的載荷実験で の $\Sigma E - \Sigma \delta$ 関係を表わす実線の近くに分布して おり、2撃目以降の衝撃載荷の $\sum E - \sum \delta$ 関係はNC シリーズで行なった衝撃載荷後の静的載荷実験 で把握可能であると考えられる。特に、1撃目 の落下高さが同じ(H=1.1m)であった75R-1.1H 供試体(NC/rep.シリーズ)と75-1.1H供試体(NC シリーズ)について $\sum E \geq \sum \delta$ の値を比較すれば良 い一致が見られる(**表**-4参照)。

以上のように、累積吸収エネルギー $\sum E$ と累積 変位 $\sum E$ の関係に着目すれば、まだ損傷を受けて いない梁に対する1撃目の衝撃載荷時の $\sum E$ - $\sum \delta$ 関係は無損傷の梁に対する静的載荷実験で、

いったん損傷を受けた後の梁に対する2撃目以降の衝撃載荷時の $\sum E - \sum \delta$ 関係はNCシリーズ2 段階載荷実験(衝撃載荷+静的載荷)で,それ ぞれ捉えられることが明らかとなった。2撃目 以降の落下高さを0.35mに固定した本実験の条 件に限定されるが,衝撃を受けたPC梁がどれだ け残存耐荷性能を残しているかを検討する上で は,2段階載荷実験によって有用な情報を得る ことが可能であると考えられる。付け加えるな らば,2段階載荷実験は,繰返し衝撃載荷実験 よりも簡便であり,また安全に実施できるとい う利点がある。

4. 結論

本研究は、支点近傍に衝撃荷重を受けたPC梁 がどれだけの残存耐荷性能を有しているかを実 験的に把握することを目的とし、繰返し衝撃載 荷実験(NC/rep.シリーズ)と、単一重錘落下衝 撃実験に引続く静的載荷実験(NCシリーズ)を それぞれ実施し、それらの結果を比較した。本 研究によって得られた成果を以下に要約する。 (1)繰返し衝撃載荷および2段階載荷実験に おいて、累積変位が10mmを越えるPC梁は全て、 載荷点と支承を結ぶ面に沿ったコンクリート がある幅で完全に破壊してずれ量も大きく、 既にせん断破壊の終局状態に至っていると認 められた。

(2) 2段階載荷実験における静的残存耐力P_Rは, 落下高さが大きくなる程小さくなる。

表-4 累積変位と累積

1撃目	累積変位	累積吸収エネルギーΣE(kN·m)					
落下高さ	Σδ(mm)	NC/rep.シリーズ	NCシリーズ				
H (m)		75R-1.1H	75-1.1H				
	6.1	1.38	1.42				
1.1	8.6	1.90	1.71				
	9.6	1.96	1.88				

(3) 1撃目の衝撃載荷時のΣE-Σδ関係は無損傷の梁に対する静的載荷実験で把握可能である。
 (4) 既に損傷を受けた後の梁に対する2撃目以降の繰返し衝撃載荷時のΣE-Σδ関係は,2段階載荷実験(単一重錘落下衝撃実験に引続く静的載荷実験)で捉えることが可能である。

参考文献

- 社団法人日本道路協会:落石対策便覧,平成 12年6月
- 2) 土木学会:ロックシェッドの耐衝撃設計 構 造工学シリーズ8,平成10年
- 建設省土木研究所構造研究室・(社) プレス トレス・コンクリート建設業協会:PRCロッ クシェッドの設計法に関する共同研究報告 書,建設省土木研究所共同研究報告書 第 148号,1996.3
- 下山一貴:支点付近に荷重を受けるPC梁の せん断力学特性に関する研究,防衛大学校 修士論文,平成14年3月
- 5) 白石博文ほか: 礫衝突による損傷を受けたコ ンクリート充填鋼管の残存耐力に関する実 験的研究, 土木学会論文集, No.738/I-64, P.85-95, 2003.7
- 6) 千賀孝宣:鋼繊維補強超高強度コンクリート はりの衝撃抵抗性に関する研究,防衛大学校 修士論文,平成17年3月
- 7) 土木学会:衝撃実験・解析の基礎と応用 構 造工学シリーズ15, 平成16年
- 別府万寿博ほか: RCはり部材の衝撃実験に おける衝撃荷重の計測と波形処理法, 土木学 会論文集, No.724/I-62, P.141~P.156, 2003.1