論文 RC 部材中の鉄筋の損傷状態に関する解析的研究

和田 映二^{*1}·斉藤 成彦^{*2}·檜貝 勇^{*3}

要旨:被災した RC 構造物の復旧を合理的に行うためには, RC 構造物の損傷状態を詳細に 把握し,残存性能を精度良く評価することが必要である。本研究では,地震力を受ける RC 部材中の鉄筋に着目し,構造解析手法の一つである剛体バネモデルに,ファイバーモデルを 導入した鉄筋要素を用いることにより,鉄筋の挙動を詳細に評価することを試みた。解析対 象には,曲げ破壊型およびせん断破壊型の供試体を選び,鉄筋の損傷状態の違いについて検 討を行った。

キーワード: 剛体バネモデル,ファイバーモデル,鉄筋,損傷状態

1. はじめに

過大な地震力に対して RC 部材に十分な耐震 性能を確保するには,最大荷重以降,部材が完 全に耐力を失うまでの破壊挙動を正確に把握し ておく必要がある。また,被災した構造物の復 旧を迅速かつ合理的に行うためには,部材の損 傷状態を詳細に把握し,構造物の残存性能を精 度良く評価する必要がある。

有限要素法に代表される非線形数値解析手法 は、部材内の詳細なひずみ分布が得られるため、 部材の損傷過程や損傷程度を評価する手法とし て期待されている。近年、コンクリートの損傷 状態の評価に関する研究はいくつか見られ、非 線形解析により得られる局所ひずみを適切な領 域で平均化することで、要素寸法によらずひず みを評価することの可能性が示されている¹⁾。一 方で、RC部材における鉄筋は、降伏によって部 材の耐荷性能に大きな影響を及ぼすとともに、 座屈や破断といった複雑な非線形挙動により耐 力低下過程に影響を及ぼすが、鉄筋の損傷状態 については降伏の有無程度の評価に止まってい るのが現状である。

そこで本研究では,部材中の鉄筋の挙動を詳 細に把握することを目的とし,剛体バネモデル (以下, RBSM) にファイバーモデルに基づく鉄 筋要素を導入した。開発した手法を用いて,曲 げ破壊型およびせん断破壊型の耐力劣化性状を 示す RC 柱の解析を行い,部材中の鉄筋の損傷状 態の把握を試みた。

2. 解析手法

2.1 RBSM によるコンクリートのモデル化

本研究では, コンクリートのモデル化に材料 を離散的に扱う手法の一つである RBSM を用い た。RBSM では、対象物を有限個の要素に分割 し,要素自身を2次元剛体変位の3自由度を有 する剛体と仮定し,要素境界辺上に垂直バネお よびせん断バネからなるバネ系を設ける。これ らのバネ系に対象とする材料の特性を導入し. このバネに蓄えられるエネルギーを評価するこ とによって材料の挙動を予測することができる。 RBSM は、要素間のすべりやひび割れ等の不連 続現象を比較的容易に表現できるが,ひび割れ は要素境界辺に沿って発生するため, Voronoi 多 角形を用いてランダムな要素分割を施すことで, ひび割れの要素依存性を低減している²⁾。また, コンクリートの材料特性は,要素境界辺上の垂 直バネおよびせん断バネに, それぞれ繰り返し

*1	山梨大学大学院	医学工学総合教育部 (正会員)
*2	山梨大学大学院	医学工学総合研究部助教授 博(工) (正会員)
*3	山梨大学大学院	医学工学総合研究部教授 工博 (正会員)

繰り返し応力下の 図-1 コンクリートモデル

応力に対応した引張-圧縮挙動(図-1), せん 断すべり挙動をモデル化することで表現した³⁾。 2.2 ファイバーモデルによる鉄筋のモデル化

鉄筋は、はり要素を用いて離散的にモデル化 し, RBSM に導入した²⁾。それぞれの鉄筋は,一 連のはり要素によって構成され,はり要素の節 点においてリンク要素を介してコンクリートと 接合される。ここで,帯鉄筋と軸方向鉄筋の交 差部も、それぞれが独立にコンクリートと接合 される。一般に、RC 構造物の解析では鉄筋要素 内の断面分割は行わずに平均応力で評価するが, 本研究では鉄筋の挙動を詳細に把握するために, 鉄筋はり要素にファイバーモデルを用いた。す なわち, 図-2に示されるように, 鉄筋はり要素 を軸方向及び断面方向に細かく分割し、各微小 要素に対して非線形の応力ーひずみ関係を与え ることにより, 部材中の鉄筋の複雑な挙動を表 現することを試みた。各微小要素には、福浦と 前川⁴⁾によって提案された応力-ひずみ関係(図 -3)を適用した。なお、本手法では幾何学的非

繰り返し応力下の 図-4 付着すべりモデル⁵⁾

線形性を考慮している。また、リンク要素を用 いて鉄筋とコンクリート間の付着すべり挙動を 表現し、図-4に示されるような付着応力-すべ り関係⁵⁾を適用した。

3. 曲げ破壊型供試体

3.1 解析概要

曲げ破壊型の耐力低下挙動を示す RC 柱の解 析を行い, 部材中の鉄筋の損傷状態について検 討を試みた。解析対象には、図-5に示される帯 鉄筋の配置を変えて実験が行われた2種類のRC 柱⁶を選んだ。供試体A(外巻き帯鉄筋)は,柱 の全区間で帯鉄筋を軸方向鉄筋の外周に配置し たもので、供試体 B(内巻き帯鉄筋)は、柱基 部から1D(Dは柱断面高さ)区間の帯鉄筋を軸 方向鉄筋の内側に配置したものである。実験で は、製作時期の違いにより 2 つの供試体で材料 強度が異なっているが,解析では同じ強度(実 験での供試体 B の強度)を用い、コンクリート の圧縮強度を 36.7MPa, 軸方向鉄筋 (D19) の降

図-6 荷重-変位関係

伏強度を389MPa,帯鉄筋(D13)の降伏強度を 358MPaとした。解析での載荷条件は,柱基部を 固定し,実験同様に供試体天端に軸圧縮応力 0.98MPaを作用させた上で,降伏変位の整数倍で 正負交番載荷を行った。

3.2 耐荷性状の評価

図-6に、解析より得られた荷重-変位関係を 実験の包絡線とともに示す。また、図-7に、主 鉄筋降伏時および耐力低下後(75mm 変位時)に おけるひび割れ性状を示す。全外巻き帯鉄筋の 供試体 A は、主鉄筋降伏後しばらく荷重を保持 した後、柱基部におけるコンクリートの圧壊が 進むにつれ荷重が低下した。一部内巻き帯鉄筋 の供試体 B では、内巻き帯鉄筋が配置されてい る区間のかぶりコンクリートの損傷が早期に進 み、主鉄筋降伏直後から徐々に荷重が低下した。 実験結果と比較すると、曲げひび割れの進展性 状や最大耐力はよく対応しており、耐力低下傾 向は、解析での早期の耐力低下を除けば概ね評 価できている。

両供試体の部材中の鉄筋の挙動に着目し,柱 の耐力低下挙動との関連について調べた。図-7 に示す耐力低下後の破壊性状を見ると,両供試 体ともに軸方向鉄筋がはらみ出していることが 確認できる。供試体 A では,外巻き帯鉄筋によ り軸方向鉄筋が拘束されるため,240mmの区間 ではらみ出しているのに対し,供試体 B では外 巻き帯鉄筋のない360mmの長い区間ではらみ出 している。図-8に,軸方向主鉄筋のはらみ出し 中央での局所応力一局所ひずみ履歴と,はらみ

図-7 ひび割れ性状(解析結果)

出しが生じている区間の平均応力-平均ひずみ 履歴を示す。局所ひずみの履歴は、柱左端の主 鉄筋について断面分割内の外側(かぶり側)と 内側(コアコンクリート側)のものを示した。 図より, 載荷初期では断面内の局所ひずみは, 内側と外側ともに同様の挙動を示すが、耐力低 下時(図-6の丸印)には、コンクリートの圧壊 の進行によりかぶりコンクリートが剥離し鉄筋 がはらみ出すため,鉄筋の内側と外側で正負の 異なるひずみが増大し始めるのがわかる(図-8 の丸印)。また,供試体 A は,外巻き帯鉄筋の拘 東によりはらみ出し区間が短いため、平均ひず みは圧縮側にそれほど大きく増加はしていない が, 平均応力が徐々に減少しており, 座屈する 鉄筋の応力--ひずみ履歴 ⁷⁾と同様の挙動を示し ている。供試体 B は、1D 区間で外巻き帯鉄筋が なくはらみ出す領域が長いため、載荷とともに 平均ひずみが圧縮側に大きく増加し、平均応力 が著しく減少していく様子が確認できる。解析 は2次元モデルであるため、軸方向主鉄筋の断 面積は奥行き方向に配置された 5 本分の断面積

図-9 軸方向主鉄筋損傷レベル分布

の和である。したがって、細長比は現実と異な っており、座屈挙動を正確に再現するには至っ ていないが、ファイバーモデルによる断面内の 局所ひずみを扱うことで、耐力低下時における 部材中の鉄筋の複雑な挙動をある程度把握する ことができる。

3.3 鉄筋の損傷状態の評価

鉄筋断面内の各微小要素のひずみを用いて, 部材中の鉄筋の損傷状態の評価を試みた。部材 中の鉄筋は複雑な履歴挙動を示すが, 圧縮, 引 張を問わず経験した最大のひずみを表-1 に示 すようにレベル分けを行い, 図-9 に示す損傷レ ベル分布を作成した(図-9 中の「局所」)。評価 区間は, 図-5 に示す柱基部の左端主鉄筋とした。 主鉄筋降伏後の 25mm 変位時には, 両供試体と もに鉄筋断面内で一様にレベル 3 程度の損傷を 受けているが, 耐力低下後の96mm変位時では, 断面内で損傷レベルが分布しているのがわかる。

図-11 荷重-変位関係

柱基部でのコンクリートの圧壊の進行により, 鉄筋のはらみ出しが生じ,最外縁に大きな引張 ひずみが生じている。損傷レベルは最大で 8 を 示し,局所的にはかなり大きな損傷を受けてい ることが確認できる。また,図-9に示す分布図 のうち「平均」とあるものは,鉄筋の断面分割 を行わないで解析したものであり,鉄筋の損傷 レベルは 4 とかなり過小評価になることが分か る。ファイバーモデルにより鉄筋の断面分割を 行うことにより,鉄筋の詳細な損傷状態を把握 することができるとともに,局所的なひずみ履 歴を用いて疲労破断等の評価につながる可能性 を示している。

4. せん断破壊型供試体

4.1 解析概要

せん断破壊型の耐力低下挙動を示す RC 柱の 解析を行い,部材中の鉄筋の損傷状態について 検討を行った。解析対象には,図-10 に示す供 試体高さの異なる2種類の RC 柱⁸⁾を選び,供試 体天端に軸圧縮応力 2MPa を作用させ,供試体の 両端の回転を拘束した正負交番載荷を行った。 材料強度には実験値を用い, コンクリートの圧 縮強度は 34.1MPa (R-3) および 32.7MPa (R-5), 鉄筋の降伏強度は,軸方向鉄筋 (D19) が 469MPa, 帯鉄筋 (D6) が 324MPa である。

4.2 鉄筋の損傷状態の評価

図-11 に、実験と解析による荷重-変位関係 を示す。また主鉄筋降伏時および耐力低下後に おけるひび割れ性状を図-12 に示す。解析値は、 実験値と同様にせん断破壊し、耐力低下の傾向 を概ね捉えることができている。ひび割れ性状 を見ると、柱端部で発生した曲げひび割れが、 柱中央部に近づくにつれて斜めひび割れに発展 し、供試体全域にわたる大きな斜めひび割れに よって破壊していることが確認できる。

図-10 に示す評価区間における左端主鉄筋基 部の損傷レベル分布を図-13 に示す。R-3, R-5 供試体ともにせん断破壊によって耐力低下を起 こしたため,主鉄筋の損傷レベルは,曲げに比 べて全体的に低い値を示している。R-3 は,最大 荷重時に主鉄筋が降伏しており,曲げ降伏後の せん断破壊であったことが確認できる。通常の 断面分割を行わない鉄筋モデルを用いた場合に は,R-5 供試体の鉄筋はほとんど損傷しないもの と評価されるが,断面内の局所ひずみを見ると, 荷重低下後に斜めひび割れの影響を受け局所的 に損傷の大きな部分(レベル4)が見られる。

図-10 に示した帯鉄筋 A, B について損傷レ ベル分布を図-14 に示す。斜めひび割れの影響 により,最大耐力後には帯鉄筋全域にわたって 大きな損傷(最大でレベル 7)を受けている。特 に斜めひび割れ通過位置で損傷が著しいことが 確認できる。

5. まとめ

本研究では、鉄筋要素にファイバーモデルを 導入した RBSM を用いて、部材中の鉄筋の損傷 状態について解析的に検討を行い、以下の知見 を得た。

- (1)鉄筋の断面内の局所ひずみを扱うファイバ ーモデルを導入することにより、座屈を伴
 う RC 柱の耐力低下挙動を比較的よく捉え ることができた。
- (2)鉄筋の断面内での局所ひずみを利用して, 鉄筋の損傷状態を詳細に把握することが可 能であり,鉄筋の損傷程度を定量的に扱う ことの可能性が示された。

参考文献

- 諏訪俊輔ほか:繰り返し荷重を受ける RC 部 材への非局所構成則の適用,コンクリート工 学年次論文集, Vol.27, No.2, pp.109-114, 2005
- Saito, S. and Hikosaka, H. : Numerical analyses of reinforced concrete structures using spring network models, J. of Materials, Conc. Struct., Pavements, JSCE, No.627, pp.289-303, 1999
- 3) 斉藤成彦ほか:繰り返し荷重を受ける鉄筋コ ンクリート柱の RBSM 解析,構造工学論文 集,土木学会, Vol.47A, pp.735-742, 2001.3

- 福浦尚之,前川宏一: RC 非線形解析に用いる鉄筋の繰り返し履歴モデル,土木学会論 文集, No.564/V-35, pp.291-295, 1997
- 5) Comite Euro-International du Beton : CEB-FIP Model Code 1990 First Draft, CEB, 1990
- 6) 石橋忠良ほか: 矩形帯鉄筋を軸方向鉄筋の内 側に配置した鉄筋コンクリート柱の正負水
 平交番載荷実験, 土木学会論文集, No.732/V-59, pp.27-38, 2003.5
- 7) 檜貝勇ほか:塑性域から座屈域にわたる大変 位の繰り返しを受ける異形鉄筋の破壊条件 に関する研究,土木学会論文集,No.746/V-61, pp.241-249, 2003.11
- Xiao *et al.*:Steel jacket retrofit for enhancing shear strength of short rectangular reinforced concrete columns, Report No.SSRP-92/07, University of California, San Diego, 1993