論文 座屈抑制エレメントを用いた鉄筋コンクリート橋脚の耐震性能

松林 卓^{*1}・原 夏生^{*2}・三島 徹也^{*2}・請川 誠^{*3}

要旨:鉄筋コンクリート橋脚の耐震設計においては,塑性変形性能に優れた構造を実現する ために,帯鉄筋や中間帯鉄筋の配置間隔等が規定されている。一方,このような耐震基準上 の要求を満たすと,現場における配筋作業が煩雑になるなどの課題が生じている。そこで, 従来の中間帯鉄筋に代わって軸方向鉄筋の座屈を抑制し,かつ施工性に優れる方法を考案し, それを適用した橋脚モデル試験体の正負交番載荷試験を実施した。実験の結果,本座屈抑制 方法を適用した構造は,従来の構造と同等の耐震性能を有することが確認された。 キーワード:耐震性能,座屈,中間帯鉄筋,施工性,定着,座屈抑制エレメント

1. はじめに

鉄筋コンクリート橋脚における現在の耐震基 準では,塑性変形性能に優れた構造を実現する ために,帯鉄筋や中間帯鉄筋の配置間隔等が規 定されている。一方,このような耐震基準上の 要求を満たすと,現場における配筋作業が非常 に煩雑になるとともに,コンクリート打設時の 確実な充填性にも注意が必要となるなど,所定 の品質を確保するための課題が生じている。

このような現状を踏まえ,従来の中間帯鉄筋 が受け持つ機能のうち軸方向鉄筋の座屈抑制に 関して,中間帯鉄筋を貫通させずにコアコンク リートに定着する構造を考案し¹⁾,さらに現場施 工の簡便性を考慮した座屈抑制部材を開発した。

本論文では,その座屈抑制部材を適用した橋 脚モデル試験体について行った正負交番載荷試 験結果を示し,その耐震性能について従来構造 との比較を行っている。

2.軸方向鉄筋の座屈抑制が部材の塑性変形性能 を向上させる効果についての考察

図-1 は, 交番荷重下で曲げ破壊を生ずる鉄筋 コンクリート部材の荷重 - 変位関係を模式的に 示したものである²⁾。軸方向鉄筋の降伏後(B点),

図-1 鉄筋コンクリート部材の荷重 - 変位関係 の模式図

最大耐力 C 点に至る。 C 点では,かぶりコンク リートの剥落や軸方向鉄筋の座屈が開始する。 軸方向鉄筋が座屈するとコアコンクリートの圧 壊が進行し D 点に至る。 C 点への到達を抑制す ることが,部材の塑性変形性能を向上させるこ とにつながる。

図-2 は,矩形断面橋脚モデル正負交番載荷試 験体における柱基部の軸方向鉄筋の応力-ひず み関係の履歴の一例を示したものである³⁾。本試 験体では,8 y(y:降伏時変位)の載荷時に 軸方向鉄筋の座屈が確認されている。軸方向鉄 筋は圧縮時においては,降伏応力程度の軸圧縮 力を負担しつつも,正のひずみを示している。 つまり,軸方向鉄筋が座屈するまでは,断面に おける圧縮力のかなりの部分を軸方向鉄筋が負

*1 前田建設工業(株) 技術本部 技術研究所 (正会員)

- *2 前田建設工業(株) 技術本部 技術研究所 工博(正会員)
- *3 戸田建設(株) 土木本部 工博

担しているのである。軸方向鉄筋の座屈後は, 鉄筋により分担されていた圧縮力がコンクリートに作用し,コンクリートが圧壊することで耐 力の低下が生じる。すなわち,軸方向鉄筋の座 屈を抑制することが,図-1におけるC点への到 達を抑制することになるものと考えられる。

3. 座屈抑制エレメントの提案

上述したような座屈の抑制効果は,通常の鉄 筋コンクリート構造においては,帯鉄筋および 中間帯鉄筋によって得られる。ここで,中間帯 鉄筋の機能には、せん断補強と軸方向鉄筋の座 屈抑制の2つがある。これらの機能を分けて考 えると,所定のせん断耐力が確保された状態で あれば,座屈抑制機能のみが必要であり,定着 が確保されれば必ずしも中間帯鉄筋は貫通して いる必要はないと考えることができる。このよ うな考え方に基づく鉄筋コンクリート部材の配 筋のイメージを従来の配筋との比較と併せて図 -3 に示す。中間帯鉄筋のコアコンクリートへの 定着方法についは,種々の方法が考えられるが, 本研究においては,図-4 に示すような,異形ス タッドあるいは,頭付きスタッドを平鋼にスタ ッド溶接にて接合したものを用いた。以下,本 研究では「座屈抑制エレメント」と称する。

4.正負交番載荷試験による耐震性能の検証

4.1 試験概要

座屈抑制エレメントを用いた構造の耐震性能 を検証するために,貫通する中間帯鉄筋を用い た構造を基準として,図-5 に示すようなフロー で座屈抑制エレメントを適用した試験体を製作 した。ここで,基準試験体とする貫通中間帯鉄 筋を用いた試験体(M3,M4)は,独立行政法人 土木研究所が実施したものである⁴⁾。代表して M3 試験体を図-6 に示す。

No.1 および No.2 試験体は,中間帯鉄筋が無く ても計算上せん断破壊しない構造である M3 試 験体を基準とし,中間帯鉄筋のすべてを座屈抑 制エレメントに置き換えたものである。

図 -2 橋脚試験体柱基部の軸方向鉄筋の 応力 - ひずみ履歴の例

図-4 座屈抑制エレメント

図-5 試験体の配筋

No.3 試験体は, No.2 に対して, 座屈抑制エレ メントを分散配置したものである。これは施工 上,より扱い易い小型の座屈抑制エレメントを 適用することを想定したものである。

No.4 試験体は,作用せん断力が大きく,中間 帯鉄筋無しでは計算上せん断破壊する構造であ る M4 試験体を基準とし,せん断破壊を防止する のに計算上必要な分量だけの中間帯鉄筋を配置 し,他は No.3 試験体の考えに基づき座屈抑制工 レメントを分散配置したものである。

4.2 試験体諸元

試験体の形状寸法は基準試験体と同様である。 各試験体の諸元を表-1 に示す。試験体の曲げ耐 力, せん断耐力, 変形性能等の算出にあたって は, 道路橋示方書・同解説 V 耐震設計編⁵⁾に 基づくことを基本とし, その中で横拘束筋の体 積比の算出において有効長を設定するにあた っては,座屈抑制エレメントの定着部材が断面 を貫通していると仮定することとした。また, 座屈抑制エレメントによるせん断補強効果は 設計上考慮しないものとした。表-2 に各試験 体の計算耐力, 変位の一覧を示す。

座屈抑制エレメントの定着長は,図-7 に示す ように,定着部が異形スタッドの場合は軸方向 鉄筋の中心から定着部の先端まで,頭付きスタ ッドの場合は同じく首下までと定義した。また, 定着長は,異形スタッドについては道路橋示方 書・同解説 下部工編⁶⁾に規定されている基本 定着長程度とし,頭付きスタッドについては1 本当たりの引張降伏耐力がコンクリートのコー ン破壊耐力以下となるように設定した。

4.3 載荷方法

実験は,独立行政法人土木研究所部材耐震強 度実験施設にて行った。載荷は,基準試験体と 同様に全ての試験体で,軸力として1,412kN(=0.98N/mm²)を作用・保持させるとともに,水 平力を正負交番に載荷した。水平載荷は,主鉄 筋が降伏した時の変位を基準とし,その整数倍

図-6 試験体形状(基準試験体 M3) 表-1 試験体諸元

	主鉄筋 SD295	帯鉄筋 SD295	コンクリート 圧縮 強度 N/mm ²	座屈抑制エレメント						
No.				定着部(貫通鉄筋も含む)					平鋼	
				種類	径	降伏点 N/mm ²	列数	定着長 ^{mm}	降伏点 N/mm ²	
No.1		D10 @75mm	34.7	異形棒鋼	D10	386.7	2	290	241.2	
No.2	88-D16		37.8	頭付き スタッド	φ9.5	452.1	2	133	341.Z	
No.3			28.7		φ6.0	507.3	5	65	338.7	
No.4	88-D19		33.9		ϕ 6.0		4	65		
				貫通鉄筋	D10	377.1	1	貫通		
M3	88-D16	D10	39.5	貫通鉄筋	D10	226.0	2	貫通	-	
M4	88-D19	@75mm	33.5	貫通鉄筋	D10	330.0	2	貫通	I	
注) 平綱寸法は No1~4共通で幅50mm 厚さ6mmである										

表-2 計算耐力(道路橋示方書 Type)

	計算値(道路橋 <mark>示方書Type</mark> Ⅱ)										
	せん断耐力	初期降	^备 伏時	終局時							
	Ps	水平変位	水平荷重	水平変位	水平荷重						
	kN	mm	kN	mm	kN						
No.1	1241.5	15.1	686.8	143.7	848.4						
No.2	1241.5	14.8	690.0	143.7	851.7						
No.3	1221.6	15.8	654.7	154.8	813.4						
No.4	1677.4	17.0	888.3	127.7	1116.2						
M3	1841.7	14.5	701.6	130.9	867.8						
M4	1878.2	14.2	825.0	115.8	1039.5						

4.4 变形性能

(1) 破壊性状

参考文献4によれば,M3 試験体は,5 yの3 サイクル目の載荷においてかぶりコンクリート がはらみだし,次の6 yの載荷で軸方向鉄筋が 座屈するとともに,かぶりコンクリートが剥落 して水平力が低下し始めた。また,M4 試験体は 5 yの載荷においてかぶりコンクリートが剥落 し,軸方向鉄筋の座屈が観察されている。

No.1 試験体は,5,0第3サイクル時にかぶ リコンクリートの剥落が生じ,帯鉄筋のはらみ だしや軸方向鉄筋の座屈が確認された。

No.2 試験体も No.1 同様,5 ,終了時にかぶり コンクリートが剥落し,帯鉄筋のはらみだしや 軸方向鉄筋の座屈が確認された。

No.3 試験体は,5 yの第1サイクルにおいて かぶりコンクリートが剥落した。またこの時, 帯鉄筋のはらみだしや軸方向鉄筋の座屈ととも に座屈抑制エレメントの引き抜けが確認された。

No.4 試験体は,5 yの第2サイクルにおいて かぶりコンクリートが剥落した。

No.3 以外の座屈抑制エレメントは,軸方向鉄 筋座屈後にコアコンクリートが圧壊するまで破 断や引き抜けを生じることはなかった。各試験 体の5 y載荷終了時の損傷状況を図-8に示す。

(2) 荷重 - 変位関係

図-9 は,実験により得られた各試験体の水平 変位-水平荷重の履歴と表-2 に示した計算値を

重ねて示したものである。また,図-10は各載荷 ステップ第1 サイクルの水平変位 - 水平荷重の 包絡線をそれぞれの基準試験体と比較して示し たものである。これらより , No.1 および No.2 試 験体は,基準とする M3 試験体に対し,耐力およ び変形性能は,1、程度の差異はあるものの同 程度であった。一方, No.3 試験体の耐力および 変形性能は 5 yまでは M3 と同程度であったが, その後の耐力低下は M3 試験体よりも顕著であ った。損傷状況の観察より,耐力低下が始まる 時点と,座屈抑制エレメントの引き抜けが始ま る時点は一致していたため,耐力低下の原因は, 座屈抑制エレメントの引抜けによるものと考え られる。また, No.4 試験体は, 基準試験体であ る M4 試験体に対し、耐力および変形性能はとも に同程度であった。

以上の結果より,座屈抑制エレメントは,そ の定着部の破断や引抜けが生じない範囲で十分 な軸方向鉄筋の座屈抑制効果があり,座屈抑制 エレメントを用いた試験体は,基準試験体と同 等の変形性能を有することが確認できた。また, 耐力および変形性能の評価においては,本来, 軸方向鉄筋の座屈現象に立脚した評価方法の構 築が必要であるが,実務的な簡易法としては, 従来構造の手法に基づき,修正を加えることで, 評価可能となる見込みを得た。

(3)エネルギー吸収性能

図-8 試験体損傷状況(5 y載荷修了時,P面側)

め,各試験体の履歴吸収エネルギーを求めた。 ここで履歴吸収エネルギー Wは,図-11 に示す ように,水平変位-水平荷重の履歴曲線が囲む 面積により算出されるものであり,この値が大 きいと,塑性化領域に達する部材でエネルギー 吸収が期待できる。図-12 は,各試験体の履歴 吸収エネルギーの累積値を,それぞれの基準試 験体と比較して示したものである。これらより, 5 y載荷時に座屈抑制エレメントの引き抜けが 生じた No.3 以外は,基準試験体と同等のエネル ギー吸収性能を有していることが確認できる。

5. まとめ

座屈抑制エレメントを用いた橋脚モデル試験 体を製作して正負交番載荷試験を行い,従来の 中間帯鉄筋を用いた構造と比較した結果,従来 構造と同等の変形性能およびエネルギー吸収性 能が確認された。これより,正負交番荷重下に おいてせん断破壊しない範囲においては中間帯 鉄筋が貫通していなくても所定の変形性能が確 保されることが確認された。また,本座屈抑制 エレメントの構造は,定着部の破断や引き抜け が生じない範囲において,十分な軸方向鉄筋座 屈抑制効果があることが確認された。

謝辞:本研究は,(独)土木研究所,(財)土木 研究センター,民間5社が参加した「高じん性 鉄筋コンクリート構造の配筋合理化技術に関す る共同研究」の1課題として実施したものであ る。貴重なご意見を賜った共同研究担当者各位 に感謝致します。

参考文献

- 1)(独)土木研究所他:共同研究報告書,第283
 号,高じん性鉄筋コンクリート構造の配筋合 理化技術に関する共同研究報告書(その1), 2002年9月
- 2)2002 年制定土木学会コンクリート標準示方書 耐震性能照査編

図-12 累積履歴吸収エネルギー

- 3)原夏生他: 突起付 H 形鋼とプレキャスト型枠を 用いた鉄骨コンクリート複合構造橋脚の構造 性能に関する研究, 土木学会論文集, No.662 / -40,pp.149-168, 2000.11
- 4)建設省土木研究所:鉄筋コンクリート橋脚の塑 性変形性能に関する実験的研究(その1)大 型模型による塑性変形性能の検討,土木研究 所資料第3739号,2000年8月
- 5) (社)日本道路協会:道路橋示方書・同解説 V 耐震設計編,2002年3月
- 6) (社)日本道路協会:道路橋示方書・同解説 下 部構造編,2002年3月