論文 履歴ダンパーと RC 部材との接合方法に関する実験的研究

木田 貴史*1・稲井 栄一*2・松浦 恒久*3

要旨:本研究は RC 造建築物に設置する間柱型ダンパーを研究対象とし、ダンパーと根巻き RC 部との接合方法に関し、スタッドボルトやベースプレートを取り付けたものなど全6種 の試験体を製作し、載荷実験を行ったものである。実験結果により、接合方法の違いが根巻 き RC 部の変形成分、応力伝達メカニズム、復元力特性に及ぼす影響を明らかにしている。 キーワード:履歴ダンパー、接合方法、根巻き RC 部、復元力特性モデル

1. はじめに

近年、制振技術の建築物への適用が増加して いるが,制振ダンパーを RC 造建築物に設置する 場合, 接合方法により制振ダンパーの性能が大 きく左右される。本研究は,図-1に示すよう な鋼製履歴ダンパーの上下部を RC で根巻きす る間柱型ダンパーを研究の対象として、履歴ダ ンパーと根巻き RC 部の接合方法を検討したも のである。この種の間柱型ダンパーに関しては、 文献¹⁾²⁾等に見られるように、各種の接合方法が 提案され実用化もなされているが,本研究では, より合理的な接合方法を開発するために、各種 接合ディテールを持つ試験体を製作し, 根巻き RC 部の挙動に着目した載荷実験を行った。根巻 き RC 部は、ダンパーの負担力を躯体梁に伝達で きるように、十分な強度と剛性を持つ必要があ るが、ひび割れによる損傷は不可避とも言え、 応力伝達メカニズムや復元力特性を明確にする

ことは,間柱型ダンパーの性能を評価する上で 極めて重要である。

2. 載荷実験

2-1 試験体

表-1に試験体一覧を、図-2に試験体形状 を示す。試験体は図-1の間柱型ダンパーの下 半分を取り出した 1/2 縮小模型試験体である。試 験体下部には、躯体の梁を模したスタブを取り 付けている。また、試験体上部のH 形鋼は履歴 ダンパーを模したもので、根巻き RC 部に埋め込 んでいる。埋め込み深さは全試験体共通で、H

表 - 1 試験体一覧

試験体	根巻きRC 部断面	鉄骨断面	埋め込み 深さ	ベースプレート (厚さ mm)	スタッドボルト	主筋	pt (%)	せん断補強筋	*1 (%)	上部 横補強筋	下部 横補強筋
No.1	300 × 500	300 × 125 × 9 × 12	300	無し	無し	18-D16	2.4	2-U9@60	1.21	6-U9	4-U9
No.2				RC頂部(12)				2-T10@70	1.17	6-T10	4-T10
No.3				下端部(19)				2-D6@100	0.37	10-D10	4-D10
No.4				無し	12- <i>ф</i> 13	12-D16	1.6	2-UHD6@34	1.07	10-UHD10	2-UHD10
No.5					8− <i>ф</i> 13						
No.6				フランジ下端(19)	無し						
*1 図-12に示すせん断面積で換算した値											

*1 山口大学大学院 理工学研究科感性デザイン工学専攻 (正会員)

*2 山口大学 工学部感性デザイン工学科助教授 工博 (正会員)

*3 (株)間組 技術研究所 研究員 (正会員)

形鋼のせいの長さである。H 形鋼は根巻き RC 部 の曲げ強度時における作用モーメント及びせん 断力に対してそれぞれ 2.3 倍及び 1.5 倍程度の降 伏強度を有している。試験体 No.1 は,この H 形 鋼を根巻き RC 部に単に埋め込んだ試験体であ る。一方,No.2~No.6 は,モーメントの伝達の ための工夫がなされている。No.2 は H 形鋼に根 巻き RC 部上端の位置にベースプレートを設け, 根巻き RC 部の主筋の一部をプレートを貫通さ せて,ナットで締結したものである。No.3 は H 形鋼下端にベースプレートを設けたものである。 No.4 及び No.5 は H 形鋼フランジにスタッドボ ルトを設けたものである。No.5 のスタッドボル トの本数は,スタッドボルトのみでモーメント

に抵抗すると考え,根巻き RC 部の曲げ強度時に おける作用せん断力がせん断耐力³⁾を超えない ように定めた。No.4 の本数は剛性確保の観点か ら No.5 の 1.5 倍とした。No.6 は H 形鋼フランジ 下端にのみベースプレートを設けたものである。

根巻き RC 部の主筋は No.1~No.3 は 18-D16, No.4~No.6 は 12-D16 としている。No.2 の前述 の主筋以外はすべてプレート定着とした。根巻 き RC 部にはせん断補強筋の他に,H 形鋼の上部 と下部において横補強筋を集中的に配している。 根巻き RC 部のせん断強度については後述する。 試験体に用いた材料の試験結果を表-2,表-3に示す。なお,コンクリートの打設は縦打ち とし,スタブ上部で打ち継ぎを行っている。

2-2 載荷方法及び計測計画

載荷装置を図-3に示す。載荷は片持ち梁形式 で,加力点高さの変位制御による正負交番漸増 載荷とした。載荷サイクルは部材角 R(加力点水

表-2 コンクリート材料試験結果

試除体	圧縮強度	ヤング係数
武祠失神	(N/mm^2)	(kN/mm²)
No.1	35.1	26.0
No.2	36.8	27.1
No.3	37.1	27.7
No.4	38.6	30.6
No.5	41.4	29.1
No.6	42.4	30.6

表-3 鋼材の材料試験結果

鉄笛名	降伏強度	引張強度	降伏ひずみ	伸び
政府石	(N/mm2)	(N/mm2)	(μ)	(%)
D6	316	493	1935	15.6
D10	351	368	3839	10.1
D16(No.1~3)	444	621	2583	16.8
D16(No.4~6)	451	627	2460	16.8
UHD6	699	937	5866	12.6
UHD10	829	1041	4249	13.1
T10	820	979	4133	12.9
U9.0	1329	91	9303	6.4
PL9	409	516	2329	23.3
PL12	349	524	2361	26.2

平変位/加力高さ)が 1/1000,2/1000,3/1000,4/1000, 5/1000(rad.)で各2回, 7.5/1000,10/1000,15/1000, 20/1000(rad.)で各1回繰り返すことにした。

変位計の取付位置を図-4に示す。計測項目 はジャッキの荷重,加力点高さでの水平変位, RC部上端における回転角と水平変形,H形鋼の 抜け出し等である。また,RC部の主筋及びせん 断補強筋,H 形鋼のフランジ及びウェブにはひ ずみゲージを貼付し,ひずみを計測した。

3. 実験結果

3-1 荷重変形関係及び破壊経過

図-5に最終ひび割れ状況を、図-6に試験 体のせん断力(水平油圧ジャッキの荷重)-部材 角 R 関係を示す。No.1 は最も早くせん断ひび割 れが発生し、大きく剛性が低下した。R=15/1000(r ad.)で最大耐力に達し,主筋の降伏の前にせん断 破壊を起こした。No.2 は R=8/1000(rad.)で主筋が 降伏した後,最大耐力に達し,せん断ひび割れ の拡大とともに耐力が低下した。No.3 は R=7.5/1 000(rad.)で主筋が降伏し,ジャッキの容量の制約 により載荷を中止した。No.4, No.5 は R=7/1000(ra d.)で主筋が降伏し,15/1000(rad.)で最大耐力に達 した後,せん断ひび割れの拡大とともに耐力が 低下した。No.6 は R=5/1000(rad.)で主筋の降伏が 始まり,20/1000 程度で最大耐力に達し,せん断 ひび割れの拡大とともに耐力が低下した。

図-7に各試験体のせん断力-部材角関係の

包絡線を示す。初期剛性は全試験体でほぼ同一 である。主筋量が同一の No.2 と No.3 を比較す ると主筋降伏時の剛性,強度は下部にベースプ レートを持つ No.3 の方が高い。また,同一主筋 の No.4, No.5, No.6 を比較すると同様にベース プレートを持つ No.6 が,最も剛性,耐力が高い。 No.4 と No.5 の挙動には大きな差異はない。

3-2 変形成分

図-8に代表的な試験体の部材角に伴う変形 成分の変化を示す。単に H 形鋼を埋め込んだ No.1 では H 形鋼の抜け出しの割合が,他の試験 体と比べて著しく大きくなっている。RC 上端の ベースプレートに主筋をナットで締結した No.2 は,初期には抜け出しがほとんどないが,部材 角が進行に伴い抜け出しの割合が増加した。ス タッドボルトを有する No.5,ベースプレートを 有する No.6 は抜け出しの割合が少なく,終始一 定の割合であった。

4. 応力伝達メカニズム

図-9および図-10に R=7.5/1000(rad.)におけ るH形鋼埋め込み部の負担モーメントおよびせ ん断力の高さ方向の分布を示す。鉄骨の負担応 力は測定したひずみの値からヤング係数を用い て算出した。図-9の横軸は RC 下端断面のモー メントで、図-10の横軸は試験体せん断力で基 準化して表している。No.2 の負担モーメントは 主筋をベースプレートと締結しているために RC 頭部で大きく減少している。下端にベースプ レートを持つ No.3, No.6 は埋め込み部でほぼ一 定のモーメントを負担している。その他の試験 体の負担モーメントは両者の中間にある。負担 せん断力は、図-10に示すように、下端に近づ くにつれ直線的に減少している。他の試験体に 比べNo.1のH形鋼下部には大きな負のせん断力 が生じている。

図-11(a),(b)にH形鋼埋め込み部の応力伝達 機構の二つのモデルを示す。H 形鋼を単に埋め 込んだ場合には,左右のコンクリートの反力に よる偶力でモーメントに抵抗しなければならな

いため, RC 部に入力されるせん断力は Q1+Q 2となり試験体のせん断力 Q1より大きくなる。 このせん断力は図-11(c)に示すモーメント分布 ⁴⁾に基づくと Q1(1+L1/L2)と算出できる。下端に ベースプレート等があり,モーメントに抵抗で きる場合には図-11(b)に示すモデルとなり, RC 部に入力するせん断力はほぼ試験体のせん断力 Q1に等しい。図-9および図-10より, No.1 は(a)のモデル, No.2, No.3, No.6は(b)のモデル に近いものと推定される。No.4,No.5は両モデル が混在しているものと推定される。

表-4は各試験体の最大せん断力の実験値と 計算値を比較したものである。表中実験値1は 試験体のせん断力(ジャッキ荷重)である。また, 実験値2は、図-11(c)により算出した RC 部の せん断力である。計算値1はRC部下端断面のモ ーメントー曲率関係から求めた最外縁主筋の降 伏時せん断力である。計算値2は文献⁵⁾の A 法 による RC 部のせん断強度である。なお、計算で は図-12のせん断断面積を仮定した。No.1 は実 験値2が計算値2に一致しており, 主筋降伏前 に RC 部がせん断破壊したものと思われる。No.2 ~No.6 では実験値2が計算値2 を大幅に上回る ものの実際の入力は実験値1に近いと推定され, せん断強度に余裕があるため, 主筋の降伏が先 行したものと推定される。ただし, No.3 だけは 計算上のせん断余裕度はない。

5. 根巻き RC 部の復元力特性モデル

せん断破壊した No.1 を除く試験体の復元力特 性モデルを検討した。H 形鋼は根巻き RC 部下端 までは埋め込まれておらず、根巻き部の曲げ挙 動は下部の RC 断面の性状に支配されると考え られる。そこで、根巻き部の曲げ特性は、RC 断 面のみを考慮して,曲げひび割れ,主筋降伏に よる Tri-linear 型のモデルとした。降伏時の変形 は, RC 断面のモーメントー曲率関係より降伏時 曲率を求め、図-13の曲率分布に基づき算出し た。主筋の抜け出し変形を文献 %に基づき評価し、 付加している。スタブ上部に可撓域を設定し, この弾性変形も考慮している。可撓域長は RC 規 準⁷⁾の接合部の等価剛域長の考え方に基づいて 設定した。せん断特性は、図-12のRC部のせ ん断断面積を用いて,曲げ降伏型梁の性能評価 法のに基づき弾性剛性とせん断ひび割れ後の剛 性を算出して求めた。

図-14 に,根巻き RC 部上端の回転角及び水 平変形の実験結果とモデルの比較を示す。 No.2, No.4, No.5 は実験結果とモデルが良く対 応をしている。しかしながら,H 形鋼下端にベ ースプレートを持つ No.3 と No.6 では,実験結 果のひび割れ後の剛性がモデルよりも若干高く なっている。これは,H 形鋼がモーメントを負 担しているためと推定される。なお,モデルの 主筋降伏時のせん断力の値は,表-4に示すよ うにほぼ実験値と一致している。

6. まとめ

履歴ダンパーと根巻き RC 部の接合方法に関 して、本研究より得られた知見を以下に記す。

- H 形鋼を単に埋め込んだ試験体 No.1 は主筋 が降伏する前に根巻き RC 部がせん断破壊 し,耐力が大きく低下した。一方,その他 の試験体は降伏まで安定した挙動を示した。
- 2) 根巻き RC 部の挙動を曲げ変形とせん断変 形に分離してモデル化し、実験結果と良好 に対応する復元力特性を設定することがで きた。ただし、H 形鋼下端にベースプレー トを有する場合には、ひび割れ後の剛性、 耐力を若干低めに評価する。これに関して は今後の課題としたい。
- 安田聡ほか:極低降伏点鋼を用いた RC 構造 用間柱型制振部材の開発,日本建築学会大会 学術講演梗概集, B-2, pp.1073-1074, 2001.9
- 2) 渕上克志ほか:極低降伏点鋼を用いた超高層 RC 建物対応鋼材ダンパーの開発,日本建築 学会大会学術講演梗概集 C-2, pp.783-784, 2001.9
- 日本建築学会:各種合成構造設計指針・同解 説,1996
- 4) 日本建築センター:建築物の構造規定, 1997
- 5)日本建築学会:鉄筋コンクリート造建物の終 局強度型耐震設計指針・同解説,1990
- 6) 日本建築学会:鉄筋コンクリート造建物の耐 震性能型評価指針(案)・同解説,2004
- 7)日本建築学会:鉄筋コンクリート構造計算規
 準・同解説,1991

参考文献