報告 高流動コンクリートのポンプ圧送による品質変化に関する現場計測

小平 伸彦^{*1}·熊野 知司^{*2}·大西 隆雄^{*3}·西岡 真帆^{*4}

要旨:ポンプ圧送にともなう高流動コンクリートの品質変化を,定量的に把握するとともに, その予測につなげるための基礎的データを得ることを目的に現場計測を行った。その結果, V漏斗流下時間は圧送後に減少し,単位容積質量や単位水量の測定結果から,モルタルレベ ルでは圧送前後で配合に変化はみられなかった。モルタルの流動曲線は圧送後に下に凸な曲 線形状となり,V漏斗流下時間の圧送後での減少と関連があると考えられた。0.15mm以下 の微粒分の粒度分布は圧送後に大径側にシフトする傾向がみられたが,硫酸イオン濃度には 圧送前後での一貫した変化の傾向はなかった。

キーワード:高流動コンクリート,ポンプ圧送,V漏斗,流動曲線,粒度分布,硫酸イオン

1. はじめに

高流動コンクリートは、コンクリート構造物 の施工の省力化、確実な充填性および耐久性の 向上等を目的とし近年使用されている。高流動 コンクリートを施工する際に、ポンプ圧送によ るスランプフロー、V漏斗流下時間の変化など 流動性状が変化する例^{1),2)}が報告されている。こ のうち、時間経過や外気温による流動性の変化 は、試験練りなどによって把握することができ るため、適切な配合選定を行うことは可能であ る。しかし、試験練りを行ったとしても現状で はポンプ圧送による流動性の変化ついては定量 的に把握できておらず、このため、実施工の状 況や実大規模の実験により配合の妥当性を検証 しているのが実状である。

以上のような背景から,実施工に適用されて いる高流動コンクリートのポンプ圧送前後にお ける性能変化についてスランプフロー,V漏斗 流下時間,空気量,単位容積質量,単位水量等 の基礎的データを収集するとともに,高粘タイ プのB形粘度計による流動曲線の測定,セメン ト粒度分布の計測,セメントの凝集に関係する 硫酸イオン濃度の変化等の比較的微視的な計測 を行って,圧送前後における性状変化のメカニ ズムの検討資料とすることとした。なお,計測 現場は国土交通省の実海域等実験場提供システ ムにより大阪港夢洲トンネル5号函製作工事に おいて行った。

2. 計測概要

計測は8月の上旬に3日に分けて実施した。 以下に計測の概要を示す。

2.1 ポンプ車の仕様

表-1に計測時のポンプ車の仕様を示す。 なお,計測現場では,2種類のポンプ車を使用 した。

表-1 ポンプ車の仕様

		1•2日目	3日目
	最大吐出量	標準圧送	標準圧送
性能	(吐出量×吐出圧力)	100m ³ /h×5.4MPa	135m ³ /h×4.6MPa
	輸送管径	125A	125A
ポンプ	コンクリートシリンダ数	2	2
本体	シリンダ径×最大ストローク	Φ225×1650mm	Ф225×2100mm
ブーム	ブーム型式	全油圧三段屈折式	全油圧四段屈折式
	最大長さ	25.8m	32.1m
	使用輸送管径	125A	125A

*1 摂南大学大学院 工学研究科 社会開発工学専攻 (正会員)
*2 摂南大学 工学部 都市環境システム工学科助教授 工博 (正会員)
*3 国土交通省 近畿地方整備局 大阪港湾・空港整備事務所 専任建設管理官
*4 清水建設(株) 土木技術本部 技術第一部 工修 (正会員)

表-2 示方配合

W/C (%)	空気量 (%)	s∕a (%)	単位量(上段:kg/m ³ , 下段:L/m ³)					混和剤			
			W	С	LP	S1 川砂	S2 砕砂	G	合計	SP (C+LP)%	増粘剤 (W*%)
55.0	2.0	2.0 49.7	175	318	281	534	229	786	2323	4	0.175
			175	105	104	207	89	300	980	*	0.1

2.2 示方配合および使用材料

表-2 に高流動コンクリートの示方配合を示 す。混和剤添加率は1日目1.625%,2日目1.6%, 3日目1.55%である。

表-3に使用材料を示す。

2.3 測定項目および測定方法

ポンプ吐出圧力はポンプ車本体の主油圧を測 定し、これに換算係数を乗じることにより求め た。コンクリートの吐出量 (m³/h) はシリンダ容 積と1分間のストローク回数から算出した。

本計測においてコンクリート試料は,トラッ クアジテータから採取した試料を圧送前試料と し,ポンプ車から圧送され筒先で採取した試料 を圧送後試料として測定を行った。

コンクリートのスランプフロー試験および空 気量試験は高流動コンクリート施工指針³⁾に定 められる B 法により測定を行った。V 漏斗試験 は、2回測定を行い2回目の測定値を実験値とし て採用した。単位容積質量はエアメータ中の試 料の質量と容積から算出した。単位水量はエア メータを用いた土研法により測定した。モルタ ル試料は、コンクリートを 5mm ふるいでウェッ トスクリーニングすることにより採取した。モ ルタルフロー試験では JIS R 5201,0 打フローを 採用し、塑性粘度は B 形粘度計を用いて測定し た。また、2日目に行った3回の測定において、 モルタル試料をアセトンに浸漬することにより 水和反応を停止させ, レーザー回折式粒度分布 測定機により粒度分布の測定を行った。なお, 測定は超音波振動を与えた状態で行った。硫酸 イオン濃度は、モルタル試料から遠心分離機を 用いて上澄水の採取を行い、イオンクロマトグ ラフィーを用いて測定を行った。

表--3 使用材料

材料名	記号	物性等				
高炉セメントB種	С	密度=3.04g/cm ³				
石灰石微粉末	LP	密度=2.70g/cm ³ 比表面積=3664cm ² /g				
川砂	S ₁	表乾密度=2.60g/cm ³ ,絶乾密度=2.57g/cm ³ 吸水率=1.25%,粗粒率=2.66				
砕砂	S ₂	表乾密度=2.62g/cm ³ ,絶乾密度=2.59g/cm ³ 吸水率=1.64%,粗粒率=2.92				
砕石	G	表乾密度=2.62g/cm ³ ,実積率=59.3%, 吸水率=0.96%				
高性能AE減水剤	SP	ポリカルボン酸系				
増粘剤	VA	バイオポリマー系				

図-1 ポンプ吐出圧力と吐出量の関係

3.測定結果および考察

3.1 ポンプ吐出圧力と吐出量の関係

図-1 にポンプ吐出圧力と吐出量の関係を示 す。図より、いずれの測定日においても吐出圧 カとコンクリートの吐出量との関係において標 準的なポンプ圧送能力の範囲で施工されていた といえる。

^{*1}日目1.625%,2日目1.6%,3日目1.55%

図-2 圧送前後におけるスランプフローの比較 図-3 圧送前後におけるモルタルフローの比較

3.2 コンクリートおよびモルタルの品質変化

図-2 に圧送前後におけるコンクリートのス ランプフローの比較を示す。図より、45 度線を はさみ値がプロットされている。このことから, スランプフローが増加する場合と減少する場合 があり、圧送前後で大きな変化はなかった。

図-3 に圧送前後におけるモルタルフローの 比較を示す。図より、コンクリートのスランプ フロー同様に、圧送前後で大きな変化はなかっ た。このことから,本計測では圧送前後におけ るスランプフローおよびモルタルフローに大き な変化はなかったといえる。

図-4 に圧送前後における V 漏斗流下時間の 比較を示す。図より45度の線よりも下側に値が プロットされており,本計測では圧送後の方が 圧送前に比べて流下時間が減少するという明確 な傾向がみられた。

図-5 に圧送前後でのコンクリートの単位容 積質量の比較を示す。ここで、本計測において 空気量はコンクリート、モルタルともに圧送後 に 0.2%~0.5%低下するという傾向がみられた ため、空気量を除いた単位容積質量の比較を行 った。図より、ほぼ45度線上に値がプロットさ れており空気量の影響を除いた場合の単位容積 質量に大きな変化はないという結果となった。

図-6 に圧送前後での空気量を除いたモルタ ルの単位容積質量の比較を示す。コンクリート の場合と同様に圧送前後で空気量を除いた単位 容積質量に変化がみられなかった。

圧送前後におけるV漏斗流下時間の比較 図-4

図-7 に圧送前後におけるコンクリートの単 位水量の比較を示す。今回の配合では単位水量 が 175kg/m³ であるが圧送前後で,10%程度の差 異が生じた。エアメータを用いて単位水量を測 定した場合の誤差の範囲⁴⁾は±5%程度であると いう報告があるが,今回の計測ではそれよりも 大きなばらつきが生じた。

図-8 に圧送前後におけるモルタルの単位水 量の比較を示す。モルタルに換算した場合の単 位水量の設計値は 250kg/m³であるが、図より測 定結果はほぼ 250kg/m³と圧送前後で変化はほと んどなかった。コンクリートの場合には、圧送 前後で単位水量にばらつきがみられたが、モル タルの場合には、単位水量に変化がないという 結果となり、モルタルレベルでは圧送前後でセ メント、水、細骨材の量的な比率に変化が生じ ていないと判断できる。

3.3 モルタルの流動曲線に関する考察

図-9 に圧送前後における塑性粘度の比較を 示す。ここでいう塑性粘度は流動曲線の全ての プロット点を直線近似することによって求めた。 図より,圧送前に比べて圧送後は,塑性粘度が1 ~2Pa・s低下する傾向がみられた。V漏斗試験は, 間隙通過性を評価するものであるが,コンクリ ートの塑性粘度との間にも相関があるといわれ ている⁵⁾。V漏斗流下時間の減少とモルタルの流 動曲線における塑性粘度の低下,すなわち,粘 性の低下に関連があるものと推察される。

図-10 にモルタルの流動曲線の一例を示す。 圧送前の流動曲線は比較的直線に近い形状となっている。一方,圧送後の流動曲線は,せん断 ひずみ速度が 3/s 程度までは,圧送前と同程度の せん断応力であるが,6/s~14/s では若干下に凸 な形状になり,特に高いせん断応力が作用する 範囲では,せん断ひずみ速度がやや速く粘性が やや小さくなるという傾向を示している。この ことから,ポンプ圧送を受けることによってモ ルタルのチキソトロピーが大きくなるような変 化が生じたと考えられる。

ここで、低速せん断ひずみ速度の範囲におけ

る圧送前後での塑性粘度の比較を試みる。浦野 ⁶⁾らは可視化実験の結果から実際の型枠内で発 生し得る最大のせん断ひずみ速度は,1.0/s 程度 であると報告している。そこで,実際に型枠内 で発生するせん断ひずみ速度に近い 0.2~3/s と いう低速せん断領域での塑性粘度について別個 に検討した。

図-11 に低速せん断領域における圧送前後で の塑性粘度の比較を示す。図より,ほぼ45度線 上に値がプロットされており,塑性粘度はほと んど変化していない。すなわち,一般的に型枠 内の流動に伴い発生する低速のせん断ひずみ速 度の範囲では,モルタルの粘性は圧送に伴う影 響を受けないといえる。

3.4 ポンプ圧送前後での微視的な変化

図-12~図-14 に圧送前後における 100µm 以下の微粒分の粒度分布曲線の比較を示す。い ずれの試料においても図に示すように粒度分布 は圧送後の方が圧送前より若干右にシフトし, 大径化する傾向がみられた。また,そのシフト している範囲は,粒径が数µm~30µm 程度の範 囲であることがわかる。コンクリート中におい てこの範囲の粒径に多く存在する粒子はセメン ト粒子であることから,ポンプ圧送によってセ メント粒子が大径化するような現象が発生した と考えられる。粒径が大きくなる要因としては, (1)複数のセメント同士の凝集がおこり,見掛け 上大きな粒子となった。(2)セメントの水和反応 が促進され,水和生成物の析出により粒子径が 大きくなった,等が考えられる。

図-15 に圧送前後における硫酸イオン濃度の 比較を示す。硫酸イオンはセメント中に含まれ る石膏から溶出するもので,加藤⁷は,硫酸イオ ン濃度が増加すると,流動性の低下が発生する 理由として,硫酸イオンがセメント粒子表面の 高性能 AE 減水剤による高分子吸着層厚を減少 させ,凝集が増大するためであるとしている。 すなわち,圧送前後において硫酸イオン濃度が 増加するようであればセメント粒子の凝集が進 行することにより粒子径が大径化したという間

接的な説明ができる。

図より, 圧送前後における硫酸イオン濃度は, 変化しない場合,若干減少する場合,若干増加 する場合等があり, 圧送前後の明確な変化の傾 向はつかめなかった。このことから,今回の計 測においては圧送前後におけるセメント粒子径 の変化の原因を明確にすることはできなかった といえる。今後は,セメント粒子径の大径化の メカニズムを探るとともにチキソトロピーの増 大との関係について検討を行っていく予定であ る。

4. まとめ

- スランプフローは、圧送前後で明確な変化の 傾向はみられなかったが、V漏斗流下時間は 圧送後に減少するという明確な傾向がみら れた。
- (2) コンクリートの場合には、圧送前後で単位水 量にばらつきが生じたが、モルタルの場合に は、単位水量に変化がないという結果となり、 モルタルレベルでは圧送前後でセメント、水、 細骨材の量的な比率に変化が生じていない と判断できる。
- (3) モルタルの流動曲線は, 圧送後に下に凸とな りチキソトロピーが増大するような傾向を 示した。
- (4) モルタルの塑性粘度は、ポンプ圧送後に低下した。このことから、V漏斗流下時間のポンプ圧送による減少は、モルタルレベルでの塑性粘度の低下と関連があると推察された。
- (5) 実際の型枠内で発生すると考えられる低い せん断ひずみ速度のレベルでは,圧送前後で の塑性粘度の変化はほとんどなかった。
- (6) 微粒分の粒度分布の測定より, 圧送前に比べ て圧送後に粒径が大径化する傾向がみられ た。
- (7) セメントの凝集に関係する硫酸イオン濃度 は,圧送前後で明確な変化の傾向はみられな かった。

5. 参考文献

- 谷口秀明,増田和機,牛島栄:高流動コンク リートのポンプ圧送による品質変化に関す る研究,コンクリート工学論文集,第9巻第 1号,pp.71-85,1998.1
- 竹田宣典, 十河茂幸, 青木茂, 平田隆祥:高 流動コンクリートのポンプ圧送性に関する 一考察, コンクリート工学年次論文報告集, Vol.16, No.1, pp.231-236, 1994.1
- 3) 土木学会:高流動コンクリート施工指針, 1998, pp.160-168
- 4) 片平博:フレッシュコンクリートの単位水量, コンクリート工学, Vol.39, No.5, pp.64-67, 2001.5
- 5) 河井徹,橋田浩:高流動コンクリートのレオ ロジー特性に関する基礎的研究コンクリー ト工学年次論文報告集, Vol.16, No.1, pp.125-130, 1994.1
- (1) 浦野真次,橋本親典,辻幸和,杉山隆文:可 視化実験手法による高流動コンクリートの 流動性評価に関する基礎的研究,土木学会論 文集,No.585, Vol.38, pp.163-174, 1998.2
- 7) 加藤弘義:粉体系高流動コンクリートの高品 質化のための材料設計,京都大学学位論文 pp.37-78,2002.9