論文 孔内局部載荷試験によるコンクリート性状の把握に関する研究

皿井 剛典^{*1}·田中 徹^{*2}·清水陽一郎^{*3}·高橋 輝^{*4}

要旨:本研究は、コンクリート表面から劣化が進行した構造物の劣化深度を把握することが 可能な試験装置を開発し、載荷試験によるコンクリート性状(強度)の推定に関して検討し たものである。試験装置は、構造物に削孔したコア孔内の任意の深度で、局部的な載荷試験 が実施できることから「孔内局部載荷試験装置」と呼ぶ。この試験装置を用い、モルタル供 試体による性能確認試験およびコンクリート供試体による適用性検討試験を行った結果、任 意の深度におけるコンクリート強度を推定できることが分かった。

キーワード:コア孔内、局部載荷試験、載荷先端形状、コンクリート強度推定、劣化深度

1. はじめに

ダムや橋梁などのコンクリート構造物が寒冷 地にある場合,しばしば凍害による劣化が生じ ることがある。凍害が原因のコンクリートの劣 化は,コンクリート中の水の凍結融解作用によ り生じるもので,コンクリート表面にスケーリ ングや微細なひび割れ,ポップアウトが発生す る。これらの劣化は,コンクリート表面から深 部へと徐々に進行し,ひどい場合には鉄筋位置 まで到達し,鉄筋腐食の原因となる。

このため、凍害による劣化が生じた構造物の 補修・補強を考える場合、凍害の影響範囲、劣 化深度を的確に把握することが重要となる。ま た、断面修復による補修が必要な場合には、は つり取りの範囲や深さなど、最適な補修スペッ クを検討する必要がある。補修スペックが最適 であれば、施工範囲が最小限となり、建設廃棄 物の発生も最小とすることができる。

しかしながら,現状では,構造物の任意の深 度でコンクリート性状を確認し,劣化深度を特 定するような原位置調査手法は無い。そこで, 本研究では,コア"孔内"の任意の深度におい て,"局部"的な"載荷"試験を行うことにより, コンクリート性状を把握できる「孔内局部載荷 試験装置」(以下,試験装置)を開発し,性能の 確認および適用性を検討した。なお,この試験 装置を用いて行う試験を,「孔内局部載荷試験」

(以下,載荷試験)と呼ぶ。

2. 孔内局部載荷試験の概要

試験装置は,変位計や油圧ピストンを内蔵し た直径 40mm,長さ 270mmの円柱状の"本体" と,コア孔壁に貫入させる"載荷先端",載荷位 置(点)を目視確認する"ファイバースコープ" からなっている(図-1)。

載荷試験の際には、この「試験装置」に、油 圧を加えるための「加圧ポンプ」(圧力計を含む)、 変位計や圧力計のデータ収集のための「データ 収集装置(ノートパソコン)」、ファイバースコ ープの画像確認のための「ディスプレー」を接 続し、実施する(図-2)。試験実施のためのコ ア孔は、直径 42mm とする。

載荷試験は,(1)直径 42mm のコア削孔の後, (2)試験装置をコア孔内に挿入し,(3)載荷先端が 試験実施深度(任意の深度)となるように固定 し,(4)油圧ポンプにより加圧し,(5)載荷先端を

*1	川崎地質	(株)	事業本部保全技術部保全技術グループ課長代理 工修 (正会員)	
*2	戸田建設	(株)	+木本部環境ソリューション部主管 工修 (正会員)	
*3	戸田建設	(株)	土木本部環境ソリューション部係員 工修 (正会員)	
*4	川崎地質	(株)	技術本部技術統括部課長代理 工修	

孔壁に貫入させ、(6)貫入量(変位計)と荷重(圧 力計)の値を記録する、ことにより実施する。

試験によって得られた貫入量と荷重の値は, 貫入量-荷重曲線として表し,曲線の傾きから "貫入抵抗値"を求める。貫入抵抗値の算定例 を図-3に示す。貫入抵抗値は,載荷先端のコ ンクリート孔壁への貫入のしにくさ(しやすさ) を表しており,コンクリートの強度推定のため の指標とする。

3. 試験概要

本研究では、試験誤差など試験装置の性能確

図-1 孔内局部載荷試験装置

認のためにモルタル供試体を,粗骨材・空隙の 影響やコンクリート強度との関係といったコン クリートへの適用性検討のためにコンクリート 供試体を,それぞれ作製し,試験・検討を行っ た。以下に各試験の概要を記す。

3.1 モルタル供試体による性能確認試験

試験装置の性能確認試験は、粗骨材による測 定値への影響(ばらつき)を排除するために、 モルタル供試体を用いた。供試体は、水セメン ト比を 100%、85%、55%に変化(表-1,表-2)させ、図-4に示す形状で作製した。

載荷試験は、材齢 37 日の供試体に 6 本のコア 孔を削孔し(図-4)、各コア孔につき打設方向 の表面側から 5 深度の位置で実施した。各深度 では、載荷先端の形状を変え、1 孔 1 深度につき 3 点(方向)の載荷試験を行った(1 載荷先端に つき計 18 点)。

表一1 モルタル供試体 使用材料

材料名	種類	産地・品名	密度
セメント	普通	太平洋セメント㈱	3.16
水	地下水	つくば市	1.00
细母牡	陸砂	外浪逆浦産(70%)	2.60
和肖竹	砕砂	葛生産(30%)	2.67

表-2 モルタル供試体 配合

ما الداريا ما	単位量(kg/610リットル)				
パセメントに (%)	セメント	水	細骨材		
(/0/			陸砂	砕砂	
100	170	170	621	273	
85	200	170	604	266	
55	309	170	541	238	

表-5のコンクリートをウエットスクリーニングして使用

表-3 載荷先端の形状

φ	6mm	ϕ 10mm			
細径円錐細径半円		円錐]錐 半円 平面		
<u>A</u> <u>A</u>		4	e	1	

載荷先端の形状は,**表**-3に示す直径 6mm の 「細径円錐」および「細径半円」,直径 10mm の 「円錐」,「半円」,「平面」の5 種類を用いた。

以上の条件で載荷試験を行い,モルタル供試体における貫入量と荷重の関係から,試験装置 の性能(載荷先端の形状の違いによる値の変動 の有無,試験誤差の程度)を検討した。

3.2 コンクリート供試体による適用性検討試験

(1) 粗骨材・空隙の影響確認試験(供試体A)

コンクリート中の粗骨材や空隙の影響を確認 するための試験は、図-5に示す供試体Aを用 いて実施した。なお、同時に貫入抵抗値とコン クリート強度との関係についても確認するため、 水セメント比を 100%、85%、55%(表-4,表 -5)に変化させた供試体を作製した。

載荷試験は、材齢36日の供試体に6本のコア 孔を削孔し(図-5)、各コア孔につき打設方向 の表面側から3深度の位置で実施した。各深度 では、1孔1深度につき1点の載荷試験を行った。

載荷試験実施後,載荷位置で供試体を切断し, 粗骨材や空隙が,貫入量-荷重曲線にどのよう に影響したかを確認した,

(2) 大型供試体による載荷試験(供試体B)

実構造物を模した大型供試体による載荷試験 は、図-6に示す供試体Bを用いて実施した。 供試体は、コンクリート強度の違いによる貫入 抵抗値の変化を確認するため、水セメント比を 100%、85%、55%(表-4,表-5)に変化さ せて作製した。

載荷試験は, 材齢 46 日又は 53 日の供試体の 上段, 中段, 下段にコア孔を削孔し, 供試体表 面から 6 深度の位置で実施した。各深度では, 1 孔 1 深度につき 1 点の載荷試験を行った。供試 体の上段, 中段, 下段での載荷試験は, ブリー ディングの影響による強度の違い(供試体上方 ほど強度が低下)を考慮したためである。

(1), (2)の試験では、コア削孔により得られた コア試料(φ33mm×L66mm)を用いて圧縮強度 試験を実施し((1)は材齢36日,(2)は材齢46日 又は53日),貫入抵抗値との関係を検討した。 なお, 圧縮強度試験用のコア試料は, コア孔内 における載荷位置がコア試料の中央部(高さ 33mmの位置)に相当するように成形した。

また,(1)の試験には測定値のばらつきが比較 的小さな「細径半円」と「円錐」を,(2)の試験 には「細径半円」を,載荷先端として用いた。

図-5 コンクリート供試体A 概要図

図-6 コンクリート供試体B 概要図

材料名	種類	産地・品名	密度		
セメント	普通	太平洋セメント㈱	3.16		
水	地下水	つくば市	1.00		
细母母	陸砂	外浪逆浦産(70%)	2.60		
亦四月 17]	砕砂	葛生産(30%)	2.67		
粗骨材	砕石	石岡市染谷産	2.67		
混和剤	AE減水剤	ポゾリスNo. 70	1.00		

表-4 コンクリート供試体 使用材料

表-5 コンクリート供試体 齨

	単位量(kg/m ³)					混和剤
バセメントEL (%)	セメント	水	粗骨材	細骨材		AE
(/0/				陸砂	砕砂	(C × %)
100	170	170	1041	621	273	1.00
85	200	170	1041	604	266	1.00
55	309	170	1041	541	238	1.00

4. 試験結果及び考察

- 4.1 モルタル供試体による性能確認試験
 - (1) 載荷先端形状の違いによる挙動の変化

表-3に示した5種類の載荷先端による,モルタル供試体のコア孔壁への載荷試験の結果,
 図-7に示す貫入量-荷重曲線が得られた。
 貫入量-荷重曲線は,載荷先端形状の違いにより,その挙動や傾きに違いが生じた。特に「平面」は曲線的な挙動を示し,直線的な挙動を示しした他の4種類とは全く異なっている。

また,曲線の傾きは,「細径円錐」,「円錐」,「細 径半円」,「半円」,「平面」の順で大きくなる傾 向にある。これは,孔壁に対する接触の仕方が,

「細径円錐」,「円錐」,「細径半円」,「半円」,「平 面」の順で,"点的"から"面的"に変化するこ とが原因と考えられる。

(2) 試験誤差(ばらつき)の程度

各載荷先端の貫入量-荷重曲線の傾きのばら つきは、「円錐」や「細径半円」で小さく、「細 径円錐」や「半円」、「平面」で比較的大きくな った。「半円」や「平面」は孔壁に面的に接触し、 接触面積が大きくなることから、細骨材の影響 を受けたことが原因と考えられる。

一方,「細径円錐」は、5 種類のうちで最も点 的に孔壁に接触するため、骨材や空隙の影響を 敏感に捉えてしまうことがばらつきの原因とな ったと考えられる。

(3) 水セメント比の違いによる挙動の変化

図-8は、水セメント比が異なる各供試体に おいて、「細径半円」により試験を行った結果で ある。貫入量-荷重曲線は、水セメント比が低 下するほど、傾きが大きくなる傾向にある。各 供試体を作製する際に採取したテストピース (モルタル、φ50mm×L100mm)の圧縮強度(材

齢 38 日) は、W/C=100%が 28.6N/mm²、W/C=85% が 29.9N/mm²、W/C=55%が 39.6N/mm²であり、 強度変化を捉えたものと考えられる。

このため、モルタルを対象とした場合には、 本試験装置を用いた載荷試験により、強度変化 を捉えることが可能であると言える。

0 [....] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 貫入量 (mm)

4.2 コンクリート供試体による適用性検討試験

(1) 粗骨材・空隙の影響

コンクリート供試体Aを用いた載荷試験によ り貫入量-荷重曲線に異常が認められた箇所に ついて,載荷点の切断を行ったところ,図-9 および図-10に示す結果が得られた。

図-9は、「細径半円」による載荷試験で、大 きく上に凸となる曲線を描いた載荷点である。 供試体の切断面を見ると、載荷点直下に粗骨材 があり、載荷時に載荷先端が粗骨材に触れてい

図-9 粗骨材の影響

図-10 空隙の影響

たことが分かる。このために、モルタル部を載荷した時(正常値・図-11)とは異なる挙動 を示したと言える。

また、図-10は、「円錐」による載荷試験の 結果であるが、曲線はほぼ横這いとなった。こ の点の切断面を見ると、載荷点直下に空隙が存 在していたことが分かる。載荷点直下に空隙が ある場合、荷重をそれほど増加させなくても空 隙が押し潰されていくことから(変位量が増加 する)、このような曲線となったと言える。

これらのことから,コンクリートを対象とし た載荷試験の際には,載荷点近傍における粗骨 材や空隙の存在が,異常値の発生原因となるこ とが分かる。

(2) 貫入抵抗値とコンクリート強度との関係

コンクリート供試体として作製した供試体A および供試体Bを用いた,「細径半円」によるコ ア孔壁への載荷試験およびコア試料の圧縮強度 試験の結果,図-12および図-13に示す結 果が得られた。

図-12に示すように、コア試料の圧縮強度 は、水セメント比を変化(100%,85%,55%) させたことや、打設方向によるブリーディング の影響を考慮したコア採取を実施したことによ り、10~45N/mm²の範囲に分散した。一方、対 応する貫入抵抗値は、1~11kN/mmの範囲となっ ている。

全測定値の貫入抵抗値と圧縮強度の関係は, ばらつきが非常に大きく,明瞭な相関関係は認 められない。また,圧縮強度が高くなるほど, ばらつきが大きくなる傾向にあることが分かる。 次に,供試体Aにおける同深度の 6 点の測定 値(1 深度×6 孔) および,供試体Bにおける 1 孔 6 点の測定値をそれぞれ平均した結果を図-13に示す。ここで平均した 6 点は,打設方向 によるブリーディングの影響を考慮した場合に, 同条件となる測定値をまとめたものである。

[全測定值]

このように、同条件の 6 点の測定値を平均す ると、貫入抵抗値と圧縮強度の相関性が強くな ることが分かる。また、測定値のうち、圧縮強 度が 29N/mm²以上となる値を削除すると、相関 が更に向上する。なお、この時の貫入抵抗値と 圧縮強度の関係は、式(1)のように表される。

$$F = 4.12K \tag{1}$$

ここに, F: 圧縮強度 (N/mm²)

K:貫入抵抗值 (kN/mm)

以上のことから、「細径半円」を用いた場合, 圧縮強度が 29N/mm²以下のコンクリートであれ ば,同条件の 6 点の貫入抵抗値を得ることによ り,強度を推定することができると考える。

5. まとめ

構造物の任意の深さにおいて試験可能な「孔 内局部載荷試験装置」を開発し,モルタルおよ びコンクリート供試体による各種試験を実施し た結果,以下の知見が得られた。

- (1) 載荷先端として「細径半円」や「円錐」を用 いると、ばらつきが小さく、再現性のよい値 を得ることができる。
- (2) 「細径半円」を用いた場合,コンクリート強度が 29N/mm²以下であれば,同条件の6点の 貫入抵抗値を測定することにより,圧縮強度の推定が可能である。
- (3)「細径半円」による載荷試験では,得られた 貫入抵抗値を約4倍した値が,載荷点付近の コンクリート強度と推定できる。

参考文献

- 1) 皿井剛典,高橋 輝,田中 徹,清水陽一郎: コア孔を利用した孔内局部載荷試験装置の 開発,土木学会第61回年次学術講演会概要 集6-129, pp.257-258, 2006.9
- 清水陽一郎,田中 徹,高橋 輝,皿井剛典: 孔内局部載荷試験によるコンクリート構造 物の強度推定方法に関する研究,土木学会第 61回年次学術講演会概要集 6-130, pp.259-260, 2006.9