報告 PCタンクのひび割れ防止

足立 真康*1・冨板 良史*2・堅田 茂昌*3・大西 清介*4

要旨:大型PCタンクの側壁下端は,セメントの水和熱に起因する温度応力や収縮により, ひび割れ発生確率が高くなる場合があり,その対策として,施工初期に発生する温度応力を 小さくすることが有効である。今回,低熱ポルトランドセメントと膨張材を併用した配合を 採用することで,ひび割れを完全に防止した。また,現場計測およびそれを用いた温度応力 解析を行い本対策の有効性を確認した。

キーワード: PCタンク, ひび割れ, 低熱ポルトランドセメント, 膨張材

1. はじめに

水道施設設計指針 2000¹⁾(以下,水道指針と略 す)によれば,水道施設におけるコンクリート 構造物は,防水と塩素によるコンクリートの劣 化および水質保持のため内面塗装を必要とする 場合がある。しかし,本タンクにおいては,内 面塗装を行わずにかぶりを厚くして塩素への対 策としている。本タンクは,こうした対策を講 じた国内でも数少ない大型のPCタンクである。 側壁下端部は,部材厚からマスコンクリートに 分類され,ひび割れ対策が必要であった。

本タンクの施工にあたり、マスコンクリート としての対策を各種検討し、低熱ポルトランド セメント(以下,低熱セメントと略す)と水和 抑制型の低添加型膨張材(以下,膨張材と略す) を併用した対策を採用した。対策方針を決定し, 試験練りデータを基に温度応力解析を行い使用 材料の妥当性を確認した。更に,対策の有効性 を確認するため,側壁の第1リフトに埋込型ひ ずみ計と熱電対を設置し現場計測を行った。ま た,計測結果を逆解析することで対策の定量的 評価を試みた。施工されたPCタンクにはひび 割れが発生しておらず,また,竣工前の水張り 試験においても漏水が認められず良好な結果を 得た。

2. PCタンクの概要

本タンクの形状は,内径 67.0m,有効水深 6.4m, 有効容量 22000m³の円筒形 P C タンクである。 上水用の P C タンクとしては大型に分類される。 また,側壁下端部はマスコンクリートに分類さ れ,ひび割れ対策が必要である。タンク断面図 を図-1に示す。

図-1 タンク断面図(単位:mm)

3. 目標値の設定

一般に、上水用のタンク内面は水道指針に準 じて、内面塗装が施される。本タンクは内面塗 装の代替えとして、かぶり厚を110mmとし耐久 性を確保している。しかし、内面塗装による表 面保護を設けないため、塩素ガスによって、施 工初期の温度応力および収縮によって発生する

*1	(株) 安部日鋼工業	技術本部	技術部	(正会員)
*2	(株) 安部日鋼工業	中部支店	技術部	
*3	(株) 安部日鋼工業	技術本部	技術部	(正会員)
*4	佐藤工業(株)	土木事業本部	設計部	

微細なひび割れであっても,耐久性に影響を及 ぼす恐れがあると考えた。そのため,ひび割れ を極力抑制する必要があり,ひび割れ指数の目 標値を1.75以上(ひび割れ発生確率5%以下)²⁾ と設定した。なお,PC鋼材緊張時期は,側壁第 1リフト打設の約2ヵ月後であるため,その影 響は無視している。

4. 対策方針の決定

4.1 当初配合の解析

設計図書に示されている普通ポルトランドセ メント(以下,普通セメントと略す)と膨張材 を併用した配合により,三次元 FEM による温度 応力解析を実施した。膨張材の効果は解析では 考慮せず,算出された応力に膨張材の効果を足 し合わせることで評価した。膨張材に相当する 応力は,既往の研究結果³⁾を参考に 0.5N/mm² と した。側壁下端の拘束を評価するため,底版お よび地盤もモデル化した。

解析モデルを**図-2**,解析条件を**表-1**,解 析結果を**表-2**に示す。

側壁下端部の最小ひび割れ指数は1.0となり, ひび割れ対策が必要と判断した。

4.2 ひび割れ対策方針の決定

本タンクの側壁下端部はマスコンクリートに 分類される。その対策として,水和熱の低減, 温度差の低減,拘束度の低減が考えられる⁸⁾。以 下に詳細を列記する。

(1) 水和熱の低減

生コンプラントが供給可能な発熱量の小さい 低熱セメントの使用。

(2) 温度差の低減

コンクリート温度上昇を強制的に制御するパ イプクーリング,打込み温度を低減するプレク ーリングの実施。

(3) 拘束度の低減

底版の拘束を低減するため、側壁を鉛直方向 に分割して打設する方法。

コスト,施工性,効果等を踏まえ,低熱セ メントの採用を決定した。

4.3 低熱セメントの解析

低熱セメントの配合を表-3に示す。本配合 は、材齢56日で設計基準強度に達するものであ る。先の解析条件の内、断熱温度上昇の特性値, 圧縮強度の特性値を変更した。解析条件を表-1に示す。

解析結果を表-2に示す。低熱セメントのひび 割れ指数は1.46となりひび割れ指数1.75以上を 満足できないが,膨張材の効果を考慮すると2.53 となり目標値を満足する。よって,低熱セメン トと膨張材を併用する対策を採用した。

図-2 解析モデル(1/4モデル,単位:mm)

	夜一)))))))	丌枀仵			
部位		地盤		側壁		
項目	底版		配合1 (普通セメント)	配合2 (低熱セメント)		
外気温(℃)月平均気温 [~]	5月:17°C					
		17	6.	月:23°C	2	
初期温度(°C)		1/	1/			
<u>熱伝導率(W/m°C)²/</u>		3.45	2.7	2.7		
比熱 (kJ/kg°C) ²⁾		0.8	1.15	1.15		
密度(Kg/m ³) ²⁾		2650	2400	24	-00	
断熱泹度上見特性値	Q	-	-	51.52 ²⁾	42.90 ⁵⁾	
可就通及工开时任他	r	-	-	1.39 ²⁾	0.38 5)	
熱伝達率 (W/m ² °C) ²⁾		散水14,型枠8,空気中12				
	推定式		$fc(t) = \{t/(a+bt)\}fck\cdot d$			
	а	-	-	4.50 ²⁾	19.25 ⁵⁾	
圧縮強度推定の特性値	b	-	-	0.95 ²⁾	0.78 5)	
	d	-	-	1.11 ²⁾	1.13 5)	
	fck	-	30	36	36	
	推定式		$ft(t) = c \{fc(t)\}^{1/2}$			
引張強度推定の特性値 ²⁾	с	-	0.44			
ヤング係数(N/mm ²)	600 ⁶⁾	Ec(t)= φ • 4700 {fc(t)} ^{1/2} φ:温度上昇時におけるクリーブの影響が大き				
(the line is the line is 2)	いことによるヤング係数の補正係数 **					
線膨張係数(μ/°C) ²	10					
ボアソン比 ′′		0.2				
乾燥収縮ひずみ ²⁾	-	-	JSCE式			

表-2 解析結果(側壁下端部)

最大主応力			司建改座	最小ひび		
	7 [°] レーンコンクリート (N/mm ²)	膨張コンクリート (N/mm ²)	(N/mm ²)	プレーンコンクリート	レーンコンクリート 膨張コンクリート	
配合1 (普通セメント)	2.65	2.15	2.15	0.81	1.00	材齢 6日
配合2 (低熱セメント)	1.18	0.68	1.72	1.46	2.53	材齢 10日

5. 試験練りと事前解析

試験練りを行い、フレッシュ性状、圧縮強度、 膨張率の確認をした。試験練り結果を表-4に 示す。また、試験練りの強度特性を用いて、温 度応力解析を行った。その結果、ひび割れ指数 が 2.82(材齢 10 日)となり、全章の値に比べ大 きな変化がないことを確認した。

6. 対策の妥当性確認

本対策の効果と妥当性を確認するため,実施 工において温度とひずみの計測を行った。逆解 析により,計測した温度とひずみ履歴を再現で きる解析条件を定め,温度応力解析を実施する ことで,本対策の効果を評価した。また,膨張 材無混和の解析を行い,膨張材混和の解析値と 比較することで,膨張材の効果を評価した。

6.1 現場計測

計測対象は側壁第1リフトとし,計測項目は, 側壁のコンクリート躯体内部の円周方向の実ひ ずみと,コンクリート温度とした。

計測位置を図-3に示す。計測期間は、コン クリート打設直後から1ヶ月間とした。なお、 コンクリート打設は側壁第1リフト(高さ1.65 m)を側壁全周にわたり1日で行っている。

6.2 計測結果

(1) 温度履歴

コンクリートの打設温度は 25.0℃であった。 計測した温度履歴を図-4に示す。側壁第1リ フトの中心温度は,練り混ぜから 1.1 日後にピー クに達し,下端で 37.6℃,中間で 36.8℃,上端 で 31.8℃となった。

(2) 実ひずみ

埋込型ひずみ計により計測されたコンクリートの実ひずみを図-5に示す。計測された実ひずみは,温度ひずみやクリープの影響等をすべて含んだひずみである。

温度上昇に応じてひずみが増加し、温度降下 に応じてひずみが減少している。温度上昇時の 最大膨張ひずみは下端が97×10⁻⁶(材齢1.3日), 中間で53×10⁻⁶(材齢1.0日),上端で67×10⁻⁶ (材齢 1.3 日) であった。

(3) コンクリートの強度特性

コンクリートの強度特性を把握するため,現 場養生による供試体を用い,圧縮強度および静 弾性係数試験を行った。試験結果を図-6に示 す。

表-3 配合

両合の呼びタ	W/C	単位量(kg/m ³)						
配合の呼び名	(%)	水	セメント	膨張材	細骨材	粗骨材	混和剤	
36-12-25L	47.5	155	307	20	775	1067	3.27	
细母++	³ . F.M.2.	75)						

₩月177 陸砂(表乾密度:2.60g/cm³, F.M.2.75)

粗骨材: 川砂利(表乾密度:2.67g/cm³, Gmax:25mm) 陸砂利(表乾密度:2.65g/cm³, Gmax:25mm)

表-4 試験練り結果

試験項目	試験結果		試験方法	
スランプ(cm)		13.5	ЛS A 1101	
空気量(%)	4.3		ЛS A 1128	
コンクリート温度(°C)	14		-	
	材齢14日	14.6		
圧縮強度(N/mm ²)	材齢28日	31.4	ЛS A 1108	
	材齢56日	46.3		
膨張率(×10 ⁻⁶)	材齢7日	246	JIS A 6202-B法	

温度履歴

図-4

6.3 計測値の解析的評価

(1) 逆解析(温度)

温度応力解析の前段階として,計測した3点の温度履歴を再現できる解析条件を設定した。 解析パラメーターは,断熱温度上昇の特性値(γ 値)および型枠の熱伝達率とした。

表-5に示す熱物性値を用いることで計測温 度を再現することができた。解析値と計測値の 比較を図-7~図-9に示す。

(2) 逆解析(ひずみ)

上記で得られた温度条件において,計測した 実ひずみを再現できる解析条件を設定した。そ の手法は,比較的簡便な線膨張係数を変化させ る方法⁹を採用し,温度上昇時,温度降下時,温 度降下以降の3段階に分類した。

表-6に示す線膨張係数を用いることで、中 間で 30×10⁻⁶程度の差はあるが、概ね計測ひずみ を再現することができた。解析値と計測値の比 較を図-10~図-12に示す。乾燥収縮の開始材 齢は型枠解体時期である材齢16日とした。なお、 応力およびひび割れ指数は、次節に記載する。

6.4 膨張材の検証

膨張材無混和の解析を行い, 膨張材混和の解 析と比較する。

(1) 解析条件

一般に膨張材無混和の場合,線膨張係数は 10×10⁻⁶/℃である。逆解析より,膨張材混和の 温度上昇時の線膨張係数を9×10⁻⁶/℃としたが, この値は見かけの線膨張係数であり,温度ひず みに膨張ひずみが加味した数値と考えられる。 したがって,温度上昇時の膨張材無混和の線膨 張係数は,9×10⁻⁶/℃以下と判断できる。しかし, 実測値がないことから,9・7・5×10⁻⁶/℃の3ケ ースの線膨張係数を用いて評価することとした。 なお,温度降下時および降下以後の線膨張係数 は,硬化したコンクリートの一般的な値である 10×10⁻⁶/℃とした。解析ケースを**表-7**に示す。

※1:セメントメーカー技術資料⁵⁾を参考にして算定 ※2:逆解析より算定

※3:コンクリート標準示方書(施工編)²⁾

(2) 実ひずみと応力

側壁下端における実ひずみと円周方向の応力 を図-13,図-14に示す。温度上昇時の線膨張 係数を変化させるとひずみは大きく変動するが, 応力の変動は小さい結果となった。

(3) 主応力および最小ひび割れ指数

図-15 に最大主応力の分布および最小ひび割 れ指数の分布を示す。

側壁下端に着目した場合、膨張材無混和

(Case1~Case3)においては 1.95~2.14N/mm², 膨張材混和の場合は 0.82 N/mm²となり,膨張材 を使用することで, 1.1~1.3N/mm²の応力緩和が 推測できる。また,最大主応力に対する最小ひ び割れ指数は,膨張材無混和で 1.19~1.37,膨張 材混和で 3.29 となり,目標値を満足する結果と なった。

7. 施工結果

低熱セメントと膨張材を併用した配合で施工 した側壁下端部は、ひび割れが確認されず、 また、材齢5ヶ月目に水張り試験を行ったが、 漏水も認められず、良好な結果を示した。

実ひずみ比較(上端)

図-10

表-6 温度応力解析条件

表-7 解析ケース(膨張材無混和)

			Case1	Case2	Case3
		温度上昇時	9	7	5
線膨張係数(×10 ⁻⁶ /	°C)	温度降下時	10	10	10
		温度降下以降	10	10	10

図-15 最大主応カ分布および最小ひび割れ指数分布

8. まとめ

PCタンク側壁下端のひび割れ対策として, 低熱セメントと膨張材を併用した配合を採用し た。また,対策の有効性を確認するため現場計 測および温度応力解析を行った。

本検討にて得た所見を以下に示す。

- (1) 大型PCタンク側壁下端部は温度応力や収 縮によりひび割れ発生確率が高い場合があ るが,低熱セメントと膨張材を併用するこ とで,ひび割れを防止することができた。
- (2) 現場計測に基づく温度応力解析より、本配合における最小ひび割れ指数は3.29(ひび割れ発生確率1%以下)となり、目標値の1.75以上を満足できた。
- (3)本構造と配合における膨張材の効果は1.1~
 1.3N/mm²程度と推測される。

謝辞

本対策を行うにあたり,ご協力頂きました富 山市上下水道局,佐藤工業・日本海建興共同企 業体の関係者各位および電気化学工業の保利氏, 栖原氏に謝意を表します。

参考文献

- 1) 日本水道協会:水道施設設計指針, pp.48-49, P.262, 2000
- 2) 土木学会:コンクリート標準示方書 施工編, pp.41-54, P.87, 2002
- 3) 中村時雄,斉藤文男,湯室和夫,佐野隆行: 高ビーライト系低熱セメントと水和熱抑制型 膨張材を併用した高度浄水処理施設の側壁部 マスコンクリート対策,コンクリート工学, Vol.36, No9, pp.28-34, 1998.9
- 4) 気象庁 HP 気象統計情報より
- 5) 住友大阪セメント(株):ベータセメントL技 術資料, P.15, P.35, 2003
- 6) 日本コンクリート工学協会:マスコンコンク リートのひび割れ制御に関する研究委員会報
 告書, P.158, 2006
- 7) 土木学会:コンクリート標準示方書 構造性 能照査編, P.29, pp.30-31, 2002
- 8) 大友建,新藤竹文:壁状構造物のひび割れ制 御対策とその効果,コンクリート工学, Vol.43, No5, P.168, 2005.5
- 9) 足立真康,堅田茂昌,保利彰宏,吉澤昇:
 PCタンク側壁下端部への膨張材適用,コンクリート工学年次論文集,pp.229-234,2005