論文 高温履歴を受ける高炉セメントコンクリートの自己収縮予測式

宮澤 伸吾*1・佐藤 良一*2・杉山 淳司*3

要旨:マスコンクリートの温度応力解析を行うことを想定し、高炉セメントコンクリートの自己収縮ひずみ の予測式を構築することを目的とし、4 種類の市販の高炉セメント B 種を用いたコンクリートについて、20℃ 条件下および高温履歴条件下で自己収縮試験を実施した。得られた実測値に基づいて、部材の温度履歴の影 響を考慮した実用的な高炉セメントコンクリートの自己収縮ひずみの予測式を提案した。 キーワード:高炉セメント,マスコンクリート、自己収縮、予測式、高温履歴

1. はじめに

マスコンクリート構造物の温度ひび割れの制御にお いて温度応力解析を行う場合には、入力値としてのコン クリートの物性値を正確に把握することが重要である。 断熱温度上昇量や強度発現については、コンクリート標 準示方書¹⁾に予測式が示されており、JCI研究委員会報告 書²⁾にも、新しい知見に基づいた予測式が提案されてい る。一方、自己収縮については、各種セメントを用いた コンクリートの自己収縮ひずみの予測式が提案されて いるが^{2),3),4)}、高炉セメントについては実験データが少な いのが現状である。特に、高温下における自己収縮特性 については、異なる一定温度条件下や断熱条件下での実 験結果に基づいた予測式の提案^{5),6)}がなされているが、 マスコンクリート構造物を想定した温度履歴条件下で の自己収縮特性については、不明な点が多いのが現状で ある。

本研究では、マスコンクリートの温度応力解析に用い ることを前提とした、高炉セメントコンクリートの自己 収縮ひずみの予測式を構築することを目的とする。市販 の4種類の高炉セメントB種を用いて、20℃条件下およ びマスコンクリートを想定した高温履歴条件下におい てコンクリートの自己収縮ひずみを測定し、高温履歴の 影響を考慮した自己収縮ひずみの実用的な予測式を提 案する。

2. 実験概要

2.1 使用材料および配合

セメントには、市販の4銘柄の高炉セメント B 種 (BB(A), BB(B), BB(C)および BB(D))を用いた。これら の高炉セメント B 種の試験結果は表-1 に示すとおりで あり、特にマスコンクリート向けに低熱化を図ったもの ではなく、一般的な高炉セメント B 種である。なお、高 炉スラグの分量は 40~45%である。

細骨材には,鬼怒川産川砂(表乾密度 2.60 g/cm³,吸水 率 2.30%,粗粒率 2.70)を使用し,粗骨材には葛生産砕石 (硬質砂岩,最大寸法 20mm,表乾密度 2.64 g/cm³,吸水 率 0.60%)を使用した。

混和剤としては、W/C=55%およびW/C=45%の場合は、 AE 減水剤(リグニンスルホン酸化合物とポリオールの複 合体)およびAE助剤を使用し、W/C=30%の場合は高性能 AE 減水剤(ポリカルボン酸エーテル系)および消泡剤を 使用した。W/C=55%およびW/C=45%の場合は、目標ス ランプ 10±2.5cm、目標空気量 4.5±1%とし、スランプの 調整は単位水量により行った。水セメント比 30%の場合

銘柄	密度 (g/cm ³)	比表面積 (cm ² /g)	水量 (%)	凝結 (h-m)		安	圧縮強さ (N/mm ²)		化学成分 (%)				
				始発	終結	定性	3d	7d	28d	MgO	SO_3	強熱 減量	塩化物 イオン
BB(A)	3.04	3970	29.2	2-29	4-00	良	23.1	34.4	63.1	3.20	1.90	1.05	0.009
BB(B)	3.04	3730	28.4	2-49	4-09	良	22.4	37.6	63.8	2.95	1.77	1.15	0.010
BB(C)	3.04	3700	29.4	2-50	4-25	良	21.5	36.0	63.9	2.95	2.21	1.74	0.012
BB(D)	3.02	3740	28.7	2-40	4-05	良	18.9	31.9	58.7	3.40	2.13	1.37	0.015

表-1 高炉セメントB種の試験結果

*1 足利工業大学 工学部都市環境工学科教授 博(工学) (正会員)

*2 広島大学大学院 工学研究科社会環境システム専攻教授 工博 (正会員)

*3 足利工業大学大学院 工学研究科都市環境工学専攻 (正会員)

は,目標スランプフロー50±7.5cm,目標空気量 2.0±1% とし,スランプフローの調整は高性能 AE 減水剤の添加 率により行った。

試験に用いたコンクリートのスランプ(スランプフロ ー)および空気量はいずれも目標範囲内であり, W/C=55%および W/C=45%の場合は,単位水量は 169~ 175kg/m³ であった。W/C=30%では単位水量は 160kg/m³ であり,高性能 AE 減水剤の添加率は,銘柄により 1.3 ~1.5%であった。

2.2 試験方法

(1) 自己収縮

表-2 に,試験水準を示す。シリーズ I では,自己収縮に及ぼす高炉セメント B 種の銘柄,水セメント比および高温履歴の影響を検討した。高炉セメント B 種として BB(A), BB(B), BB(C)および BB(D)の 4 銘柄を使用し,水セメント比を 55%,45%および 30%とした。高温履歴条件下における自己収縮試験では,断熱材として発泡スチロール(厚さ 200mm,発泡率 60%)を用いた内寸法 400×400×400mmの簡易断熱型枠を使用した(高温①)。

シリーズIIでは、高温履歴における温度範囲が自己収 縮に及ぼす影響を検討するために、セメントとして BB(A)を使用し、水セメント比は 55%とした。部材最小 寸法の特に大きい場合の温度履歴(厚さ4mの壁部材の中 心温度を断熱温度上昇量に基づいて FEM 解析により推 定)を想定し、400×400×400mm 供試体を温度可変室に 設置し、温度履歴を与えた(高温②)。また、シリーズ I と同様の簡易断熱型枠を用いた自己収縮試験(高温①)も 合わせて行った。

シリーズ I および II において,高温履歴条件下での自 己収縮試験では、400×400×400mm 供試体中心部におい て鉛直方向のひずみを測定した。20℃条件下での自己収 縮試験では、100×100×400mm 供試体を使用し、JCI 自 己収縮研究委員会の方法⁷⁾に準じて行なった。ただし、 自己収縮ひずみの測定は、いずれの条件についても埋込 型ひずみ計(弾性係数 40N/mm²)により行なった。

供試体の個数は,高温履歴条件下(高温①および高温 ②)では各水準につき1個,20℃条件下では各水準につき 2個とした。

(2) 圧縮強度

表-2 自己収縮試験における試験水準

シリ	W/C	温度	セメントの銘柄						
ーズ	(%)	履歴	BB(A)	BB(B)	BB(C)	BB(D)			
т	55 45	20°C	0	0	0	0			
1	30	高温①	0	0	0	0			
		20°C	0						
Π	55	高温①	0						
		高温②	0						

(3) 熱膨張係数

20℃条件下での自己収縮試験を終了した供試体(100× 100×400mm)を用い,材齢3ヶ月以上経過した時点で, 温度範囲 20~60℃における熱膨張係数の測定を行った。 全面シールされた供試体を温度可変室に設置し,供試体 中心部の温度が雰囲気温度と一致するように,温度変化 速度は1℃/hourとし,5℃間隔で一定温度を5時間保持 した後にひずみの測定を行った。

(4) 凝結試験

20℃条件下で凝結試験を行い,始発を自己収縮の起点 とした。高温履歴条件下での自己収縮の起点は,20℃条 件下での始発と同一の有効材齢とした。

3. 結果および考察

3.1 圧縮強度

図-1~図-3は、20℃条件下および高温履歴条件下(高 温①)における圧縮強度試験結果を示したものである。図 中には、コンクリート標準示方書式¹⁾および JCI マスコ ンクリートの温度ひび割れ制御に関する研究委員会式²⁾ による予測値も示している。W/C=30%の場合は、高炉セ メントB種の銘柄により圧縮強度のばらつきが大きくな っているが、W/C=45 および W/C=55%の場合は、これ らの評価式により圧縮強度の推定が可能である。

3.2 熱膨張係数

コンクリートの熱膨張係数の試験結果を表-3 に示す。

図-1 圧縮強度試験結果(W/C=55%, 20℃, 高温①)

図-2 圧縮強度試験結果(W/C=45%, 20℃, 高温①)

<u> –</u> ა	江帕强皮武厥疝未(₩/ 0-30% ,	20 C,	同遍し

W/C	セント	熱膨張係数(×10-6/℃)						
w/C	EVVY	温度上昇時	温度降下時	平均				
550/	BB(A)	8.6	12.0	10.3				
	BB(B)	10.7	10.9	10.8				
5570	BB(C)	11.1	12.5	11.8				
	BB(D)	10.4	14.0	12.2				
	BB(A)	9.3	13.5	11.4				
150/	BB(B)	10.5	10.9	10.7				
45%	BB(C)	11.9	14.2	13.0				
	BB(D)	10.7	14.0	12.4				
30%	BB(A)	9.1	13.1	11.1				
	BB(B)	10.8	11.2	11.0				
	BB(C)	10.7	13.4	12.0				
	BB(D)	10.1	13.3	11.7				

表-3 コンクリートの熱膨張係数の試験結果

いずれの水セメント比においても、熱膨張係数は温度上 昇時よりも温度降下時の方が大きく、その差は最大で4 ×10⁶/C程度であった。本研究では、自己収縮試験結果 の整理において温度補正を行なう際に、各配合・各銘柄 について、温度上昇時と温度降下時の熱膨張係数の平均 値を用いた。温度上昇時と温度降下時の平均値で比較す ると、高炉セメントB種の銘柄による熱膨張係数の差は、

図-4 コンクリート温度の経時変化(W/C=55%, 高温①)

図-5 コンクリート温度の経時変化(W/C=45%, 高温①)

図-6 コンクリート温度の経時変化(W/C=30%, 高温①)

W/C=55%および45%で約2×10⁻⁶/C,W/C=30%で約1×10⁻⁶/Cであった。

3.3 自己収縮(シリーズ I)

図-4~6は、高温履歴条件下(高温①)における自己収 縮試験用供試体の中心部の温度履歴を示している。高炉 セメント B 種の銘柄により、温度上昇量の最大値で約 5℃の差が認められたが、簡易断熱型枠の特性や試験室 の温度が試験水準により若干異なっており、これらが試 験結果に影響を及ぼしていることが考えられる。

図-7~9は、有効材齢(本研究では式(4)より算出)と自 己収縮ひずみの関係を示しており、図-10は、試験期間 が最も短いケースに合わせて、有効材齢 45 日時点にお ける自己収縮ひずみを示したものである。いずれの条件 においても、水セメント比が小さいほど、自己収縮ひず みが大きくなっている。20℃条件下においては、 W/C=55%およびW/C=45%の場合の銘柄による差は20× 10⁶~30×10⁶程度と小さく、既往の報告⁸⁾と同様の結果 となっているが、W/C=30%では約 200×10⁶と大きくな っている。なお、既往の研究⁹によれば、普通ポルトラ ンドセメントを用いたコンクリートでも、水セメント比 が小さい場合に、自己収縮ひずみのばらつきが大きいこ とが認められている。従って、自己収縮に及ぼす銘柄の 影響については、セメントの種類によらず、今後の検討 課題であると考えられる。

高温履歴条件下では、20℃条件下の場合に比べて、い ずれの水セメント比においても自己収縮ひずみが大き くなっている。特に、若材齢における自己収縮ひずみの 増加速度が、高温履歴を受けることにより大きくなって いる。自己収縮ひずみに及ぼす高温履歴の影響の程度は 高炉セメントB種の銘柄により異なっている。

3.4 自己収縮(シリーズⅡ)

高炉セメント B 種として BB(A)を用い, W/C=55%のコ ンクリートについて, 広範囲な温度履歴条件下(20℃, 高 温①, 高温②)で自己収縮試験を行った。図-11 は, 自 己収縮試験用供試体の中心部の温度履歴の測定値を示 している。最高温度は, 高温①では 48℃, 高温②では 69℃であった。

図-12 は、有効材齢と自己収縮ひずみの関係を示した ものである。20℃条件下については、シリーズ I の結果 も合わせて示してある。有効材齢 80 日で比較すると、 温度が高いケースほど自己収縮ひずみが大きくなって いる。また、若材齢における自己収縮ひずみの増加速度 も、温度が高いケースほど速くなっている。なお、この ように高温履歴を受けると自己収縮ひずみが増大する 傾向は、普通ポルトランドセメント等の高炉セメント以 外の場合にも報告されている^{5),6)}。

温度条件が自己収縮ひずみに及ぼす影響は,高温②が 最高温度に達する材齢5日程度以前において明確に現わ れており,それ以降の材齢においては,いずれの温度条 件についても自己収縮ひずみの経時変化は小さい。従っ て,既往の研究に報告されているように⁵⁾,自己収縮ひ ずみの増加速度および最終値は,最高温度(温度履歴にお けるピーク温度)により評価できるものと考えられる。

図-7 自己収縮ひずみの経時変化(W/C=55%)

図-9 自己収縮ひずみの経時変化(W/C=30%)

図-10 水セメント比と自己収縮ひずみの関係

4. 高炉セメントコンクリートの自己収縮ひずみ予測式

本研究における自己収縮ひずみの実測値に基づいて, コンクリート標準示方書の予測式(式(1)~式(4))4)を高炉 セメントB種に適用できるように修正して,以下のよう に提案する。

$$\boldsymbol{\varepsilon}_{a}(t) = \boldsymbol{\gamma} \cdot \boldsymbol{\varepsilon}_{ao} \cdot \boldsymbol{\beta}_{a}(t) \tag{1}$$

$$\varepsilon_{ao} = 3070 \exp\{-7.2(W/C)\}$$
 (2)

$$\beta_{\alpha}(t) = 1 - \exp\left\{-a(t - t_0)^b\right\}$$
(3)

- $\mathcal{E}_{a}(t): 材齢 t 日における自己収縮ひずみ (×10⁻⁶)$
- β_α(t):自己収縮ひずみの経時変化を表す関数
- y:セメントの種類を表す係数(普通ポルトランドセメン トの場合, γ=1.0)
- ε_{a0}:自己収縮ひずみの最終値(×10⁻⁶)

W/C: 水セメント比

- a, b:自己収縮の進行速度を表す係数
- t: 材齢(日), t_a: 凝結の始発(日)
 - tおよびtoはコンクリートの有効材齢(日)であり,コン クリートの温度によって次式で補正した値を用いる。

$$t, t_0 = \sum_{i=1}^{n} \Delta t_i \cdot exp \left[13.65 - \frac{4000}{273 + T(\Delta t_i) / T_0} \right] \quad (4)$$

- Δt::温度が T℃である期間の日数(日)
- $T(\Delta t_i)$:期間 Δt_i における温度(°C) $T_0=1^{\circ}$

自己収縮ひずみの最終値 ε ω については,式(1)中の γ の値を変化させても、20℃条件下での実測値に近似しな かったため、式(2)中の係数を修正することとした。また、 高温履歴を受ける場合は,最高温度が高いほど自己収縮 ひずみの最終値が増大する傾向が認められたため(図-12 参照), 最高温度 T_{max}の関数を式(2)に付加することと した。以上のことから,高炉セメントB種を用いた場合 の自己収縮ひずみの最終値は式(5)により算出すること とする。

$$\varepsilon_{ao} = 2350 \exp\{-5.8(W/C)\} + 80 \times \left[1 - \exp\{-1.2 \times 10^{-6} \times (T_{max} - 20)^4\}\right]$$
(5)

T_{max}: コンクリートの最高温度(℃)

自己収縮ひずみの増加速度については、最高温度 Tmax が高いほど速くなり、高温履歴の影響を有効材齢のみで 評価することは困難である(図-7~図-9,図-12参照)。 そこで,著者らが既に提案している式(3)中の係数 a およ び b の算定式¹⁰⁾に,最高温度 T_{max}の関数を付加し,式(6) および式(7)を提案する。ただし $20^{\circ}C \leq T_{\max} \leq 70^{\circ}C$ とする。

> $a = 3.7 \exp\{-6.8 \times (W/C)\} \times (0.060T_{max} - 0.20)$ (6)

$$b = 0.25 \exp\{2.5 \times (W/C)\} \times (-0.0075T_{max} + 1.15) \quad (7)$$

図-13 および図-14 は、20℃条件下での自己収縮ひ ずみの実測値と提案式による予測値を示したものであ

図-13

自己収縮ひずみの実測値と予測値の比較(20℃)

る。W/C=55%および45%の場合は、本提案式により、実 測値と予測値は概ね一致しているが、W/C=30%の場合は 予測誤差が大きくなるケースが認められる。図-14には、 比較のために、コンクリート標準示方書の予測式(式(1) ~式(4)による)により求めた普通ポルトランドセメント に対する予測値を合わせて示した。高炉セメントB種を 用いたコンクリートの自己収縮ひずみは、普通ポルトラ ンドセメントを用いた場合と比較すると若干大きくな る傾向が認められる。

図-15は、最高温度 T_{max} と自己収縮ひずみの関係を示している。広範囲の温度履歴条件下(20℃、高温①、高温②)で試験した BB(A)に着目すると、 T_{max} が 50℃程度で T_{max} の増加とともに自己収縮ひずみが著しく増大するが、 T_{max} が 55℃と 69℃とでは自己収縮ひずみの差は比較的小さい。このような特徴が提案式により評価されている。自己収縮ひずみの経時変化に対する提案式の適合性を図-12に示す。

以上のことから、本研究により提案した予測式により、 高温履歴を受ける高炉セメントコンクリートの自己収 縮ひずみを概ね推定できると考えられる。ただし、本予 測式は、W/C が 55%程度のコンクリートで、部材の最高 温度が 70℃程度以下の場合に適用できる。なお、コンク リート温度が 20℃程度であれば、W/C が 30~55%の場合 にも適用できる。

今後,広範囲な材料・配合および温度条件について, 予測式の精度の検証を行うことが必要である。

5. まとめ

高炉セメント B 種を用いたコンクリートについて, 20℃条件下およびマスコンクリートを想定した高温履 歴条件下で自己収縮ひずみを測定し,実験結果に基づい て自己収縮ひずみの予測式を提案した。本研究の範囲内 で明かになった事項をまとめると以下のとおりである。

- (1) 高温履歴条件下では、20℃条件下の場合と比較して、 コンクリートの自己収縮ひずみの増加速度および 最終値が大きくなる。
- (2) 高温履歴を受ける場合は、20℃条件下の場合と比較して、高炉セメントB種の銘柄による自己収縮ひずみの差が大きくなる。
- (3) 高炉セメントB種を用い,水セメント比が55%程度のコンクリートについて,高温履歴(最高温度が70℃ 程度以下)を受ける場合の自己収縮ひずみの予測式 を提案した。

謝辞

本報告の実験データは、日本コンクリート工学協会マ スコンクリートの温度ひび割れ制御指針改定委員会(委

図-15 目己収縮ひすみの実測値と予測値の比較 (W/C=55%)

員長:広島大学教授 佐藤良一)の活動の一環として実施 された共通試験(実施機関:㈱宇部三菱セメント研究所, 新日鐵高炉セメント㈱,住友大阪セメント㈱,太平洋セ メント㈱,足利工業大学)によるものである。また自己収 縮予測式の構築にあたり,委員会活動を通じて貴重なご 意見をいただいた。記して感謝の意を表する。

参考文献

- 1) 土木学会:2002年度制定、コンクリート標準示方書 (施工編)、2002.3
- 日本コンクリート工学協会:マスコンクリートのひ び割れ制御に関する研究委員会報告書,2006.6
- 田澤栄一,宮澤伸吾:コンクリートの自己収縮ひずみの予測法に関する研究:土木学会論文集,No.571 /V-36, pp.211~219, 1997.6
- 4) 土木学会:コンクリート標準示方書(構造性能照査 編), 2002.3
- 5) 大友健ほか:各種セメントを使用したコンクリートの異なる温度条件下での自己収縮特性,第 57 回セメント技術大会講演要旨, pp.176-177, 2003.5
- 6) 中里剛,鳴瀬浩康:各種セメントの自己収縮ひずみ 予測式の一提案,コンクリート工学年次論文報告集, Vol.26, No.1, pp.453-458, 2004.6
- 7) 日本コンクリート工学協会:自己収縮研究委員会報告書, pp.195-198, 1996.11
- 8) 久保征則ほか:高炉セメントを用いたコンクリートの自己収縮に関する実験的研究,コンクリート工学年次論文報告集, Vol.19, No.1, pp.763-768, 1997.6
- 9) 宮澤伸吾:自己収縮の機構および予測法, コンクリ ート工学, Vol.43, No.5, pp.27-33, 2005.5
- 10) 川合雅弘ほか:コンクリートの自己収縮ひずみの予 測式に関する一考察,コンクリート工学年次論文報 告集, Vol.25, No.1, pp.491-496, 2003.7