論文 ホタテ貝殻を細骨材として活用したコンクリートの耐久性および実 証試験

山内 匡*1・清宮 理*2・高橋 久雄*3・山路 徹*4

要旨:ホタテ全体の約50%を占めている貝殻の恒常的な大量リサイクル方法の確立を目指し,回転式破砕機に よって細粉砕したホタテ貝殻を,細骨材としてコンクリートに活用する研究を進めている。海中暴露および 気中暴露を行っている,こうしたコンクリートの材齢1年における圧縮強度や塩分浸透性等の耐久性は,普 通コンクリートと同程度であることを確認した。また,鉄筋コンクリートへの適用性確認のため,実証試験 としてケーソン本体を模擬した供試体を製作した。その結果,施工性や打継ぎ性状,また,鉄筋部への充填 状況等は普通コンクリートと同等であることを確認した。

キーワード:ホタテ貝殻,細骨材,回転式破砕機,リサイクル

1. はじめに

筆者らは、ホタテ貝殻の恒常的な大量リサイクル方法 としての確立を目指し、破砕したホタテ貝殻(以下、シ ェルサンド)を細骨材として活用したコンクリート(以 下、シェルコンクリート)の研究を行っている。

ホタテ貝殻の破砕には、コンクリート用細骨材として 適用可能な大きさまで細粉砕することが可能な回転式 破砕機(図-1)を用いた。これまでに、室内試験によ るシェルコンクリートの基本的性質や、実機プラントで 製造・運搬し、青森県八戸港内において実規模(L5.0× B2.5×H1.4m、16m³/個)のケーソン根固ブロックを製 作・沈設した実証試験によるシェルコンクリートの実用 性についての検討を行い、その結果については先に報告 した^{1),2)}。

本稿では、海中暴露および気中暴露を行ったシェルコ ンクリートの各種耐久性等の確認試験や、また、鉄筋コ ンクリートへの適用を目指して実施した実証試験の結 果を報告する。

2. 耐久性の確認試験

ケーソン根固ブロックを製作した実証試験において, シェルサンドを細骨材の25%,50%(容積比)に置換した シェルコンクリートと普通コンクリートの計3種類につ いて,海中および気中暴露を開始している。シェルコン クリートの耐久性を確認するため,材齢1年における, これらの圧縮強度や塩分浸透性に関する試験を行った。

また、ホタテ貝殻の生産量の多い地域は北海道や青森 県等の寒冷地であるため、シェルコンクリートに対して、 特に要求される耐凍結融解抵抗性についての評価は、JIS A1148(A法)による凍結融解試験によって行った。

図一1 回転式破砕機

2.1 使用材料およびコンクリート配合

シェルサンドの物性と粒度分布を,表-1 と図-2 に 示す。表中には JIS A 5308 による規定値を,図中には細 骨材(置換率 0%)およびシェルサンドで置換した細骨材 全体(置換率 25%, 50%)の粒度分布,また,コンクリー ト用砕砂(JIS A 5005)の粒度標準範囲を実線で示す。

試験項目	物性值	規定値	試験方法
表乾密度(g/cm ³)	2.63	_	US A 1100
吸水率(%)	1.02	3.0以下	JIS A 1109
微粒分量(%)	8.5	7.0以下	JIS A 1103
有機不純物	淡い	淡い	JIS A 1105
NaCl含有量(%)	0.003	0.04以下	JASS 5T 202

*1 日本国土開発(株) 技術事業センター コンクリート研究室 主任研究員 (正会員)

*2 早稲田大学 創造理工学部社会環境工学科教授 工博 (正会員)

*3 国土交通省 東北地方整備局 仙台港湾空港技術調查事務所 技術開発課長

*4 独立行政法人 港湾空港技術研究所 地盤・構造部 材料研究室 主任研究官 (正会員)

뉡분	水セメント比	シェルサンド		単位量(kg/m ³)				$C \times (\%)$			
祀 夕	W/C (%)	置換率(%)	W	С	SS	S①	S ②	G①	G2	Ad	AE 剤*
SS 0		0	149	229	0	534	292	623	553	1.00	2.00A
SS25	65	25	160	246	195	584	0	623	553	1.00	1.50A
SS50		50	172	265	367	366	0	623	553	1.00	0.80A

表-2 コンクリート配合(耐久性確認試験)

NaCl 含有量は規定値 0.04%以下を十分に満足する値で あった。この要因としては、本試験で使用した貝殻は加 工用にボイルされたものであり、また、加工後は屋外に 長期間集積されていたため、この間に雨水等によって洗 われていたことが考えられる。

セメントは普通ポルトランドセメント(C:密度 3.16g/m³)および高炉セメントB種(C:密度 3.04g/m³)を, 細骨材は山砂(S①:表乾密度 2.62g/m³,粗粒率 2.40)と砕 砂(S②:表乾密度 2.66g/m³,粗粒率 3.00)を,粗骨材は2505 砕石(G①:表乾密度 2.70g/m³,実積率 63.0%)と 4020 砕石 (G②:表乾密度 2.93g/m³,実積率 59.5%)を使用した。な お,普通コンクリートの場合は山砂と砕砂の混合比は 65:35 であるが,シェルコンクリートの場合には山砂の みを使用した。

普通ポルトランドセメントを使用したコンクリート の配合を表-2に示す。配合条件は、水セメント比 65%、 粗骨材最大寸法 40mm,設計基準強度 (σ 28) 18N/mm² とし、シェルコンクリートの配合は、スランプ 8±2.5 cm, 空気量 4.5%±1.5%が得られるように、単位水量および AE 剤を用いて調整した。スランプ試験は JIS A 1101,空気 量試験は JIS A 1128 に準拠して行った。なお、高炉セメ ント B 種を使用した配合については、AE 剤の添加量以 外は普通ポルトランドセメントの場合と同じである。

2.2 海中暴露および気中暴露の試験結果

(1) 標準供試体による圧縮強度

試験室で作製した標準供試体 (φ125×250mm)を材 齢 28 日まで標準養生 (20℃水中)を行った後,神奈川 県横須賀市にある自然海水を貯留した水槽中において 浸漬させた (海中暴露)。材齢 1 年における圧縮強度の 試験結果を表-3 に示す。同表には,標準養生を行った 材齢 7,28 日と材齢1年の圧縮強度試験結果も示す。

セメントの種類に関わらず,普通コンクリート(SS0) と同様に、シェルコンクリート(SS25, SS50)の材齢1 年における圧縮強度の低下はなく、また、標準養生と海 中暴露での環境条件の違いによる差もみられなかった。

(2) コア供試体による圧縮強度

青森県八戸港内において製作し,平成18年8月から 海中暴露および気中暴露(根固ブロックの製作ヤード) を行っているそれぞれのケーソン根固ブロックから,材

図-2 粒度分布(耐久性確認試験)

表-3 圧縮強度試験結果(標準供試体)

セメント	휦분	晋培冬州	圧縮強度(N/mm ²)			
の種類	市口方	垛児木件	σ7日	σ28 日	σ 1年	
	55.0	標準養生	21.5	29.3	35.5	
	330	海中暴露	_	—	36.3	
Ν	8825	標準養生	20.9	26.9	34.4	
	5525	海中暴露	_		35.1	
	SS50	標準養生	21.9	28.2	36.7	
		海中暴露		ļ	35.6	
BB	SS 0	標準養生	14.6	24.6	35.4	
		海中暴露	_	_	35.8	
	SS25	標準養生	14.4	24.4	36.8	
		海中暴露		ļ	34.4	
	SS50	標準養生	14.9	25.3	35.7	
		海中暴露	_		35.1	

齢1年において, JIS A 1107 に準拠してコアを採取した (写真-1)。

コア供試体は,深さ方向 90cm 程度まで採取したコア を3分割して圧縮強度試験用(ϕ 125×250mm)に成形 したものである。暴露開始前の材齢28日と材齢1年の コア供試体による圧縮強度の試験結果を図-3に示す。 なお、ケーソン根固ブロックの製作では、普通ポルトラ ンドセメントを使用した。

写真-1 根固ブロックからのコア採取状況

普通コンクリート(SS0)と同様に、海中暴露および 気中暴露ともに、シェルコンクリート(SS25, SS50)の 材齢1年における圧縮強度の低下はみられなく、材齢28 日からの強度の伸びも同程度であった。なお、標準供試 体(表-3)との圧縮強度の差は、横須賀市と八戸市で の気温の違いによる影響が大きいと考えられる。

(3) 塩分浸透性

打込み側の1面のみを残し,他面をエポキシ樹脂塗料 で被覆して作製した供試体(JSCE-G 572 に準拠)を用 いて,材齢28日まで標準養生(20℃水中)を行った後, 神奈川県横須賀市にある自然海水を貯留した水槽中に おいて浸漬させた(海中暴露)。それぞれのセメントに ついて,材齢1年におけるコンクリート表面からの深さ と全塩化物イオン量の関係を図-4,5に示す。

普通ポルトランドセメントを使用したコンクリート の場合には、いずれもほとんど変わらない塩化物イオン 量分布を示した。一方、高炉セメントB種を使用したコ ンクリートの場合、普通コンクリート(SS0)に比べて、 シェルコンクリート(SS25, SS50)の方が、明らかにコ ンクリート内部への浸透量は小さい傾向がみられた。シ ェルコンクリートの緻密化が生じている可能性が期待 されるが、更なる詳細な検討が必要であると考えられる。

全塩化物イオン量の関係(BB)

2.3 耐凍結融解抵抗性

凍結融解試験によるサイクル数と相対動弾性係数の 関係を図-6に示す。

相対動弾性係数は、凍結融解に対する抵抗性を確保す るうえで必要とされている 60%以上をいずれも満足して いる。シェルコンクリート(SS25, SS50)の耐凍結融解 抵抗性は、普通コンクリート(SS0)と同程度であること が確認された。

3. 鉄筋コンクリートへの適用に向けた実証試験

実証試験では、ケーソ本体の形状の一部や配筋等を模擬した供試体(図-7)を、実機プラントで製造・運搬したシェルコンクリートによって打込み、その施工性や打継ぎ性状、また、鉄筋部への充填状況等を確認した。

打継目は底版から 0.9m 上りの側壁部とし, 側壁の配 筋は主筋を D13@100, 配力筋を D13@200 および D13@ 100 とした。供試体はシェルサンドを細骨材の 25%, 50% (容積比) に置換したシェルコンクリートと普通コンク リートの計3種類製作した。

3.1 使用材料およびコンクリート配合

本実証試験で使用したシェルサンドの物性と粒度分 布を, 表-4 と図-8 に示す。表中には JIS A 5308 による 規定値を, 図中には細骨材(置換率0%)およびシェルサ ンドで置換した細骨材全体(置換率25%,50%)の粒度分 布,また,コンクリート用砕砂(JIS A 5005)の粒度標準 範囲を実線で示す。耐久性確認試験で使用したシェルサ ンドに比べ,粒度は細かく微粒分量の多い材料であった。

セメントは高炉セメント B 種(C:密度 3.04g/m³)を, 細骨材は砕砂(S①:表乾密度 2.68g/m³,粗粒率 3.60)と陸 砂(S②:表乾密度 2.72g/m³,粗粒率 2.10)を,粗骨材は 2505 砕石(G:表乾密度 2.70g/m³,実積率 62.1%)を使用した。 なお,普通コンクリートの場合は砕砂と陸砂の混合比は 30:70 であるが,シェルコンクリートの場合には陸砂の みを使用した。

コンクリートの配合を表-5 に示す。配合条件は,水 セメント比 50%,粗骨材最大寸法 25mm,設計基準強度 (σ28) 30N/mm² とし、シェルコンクリートの配合は, スランプ 12±2.5 cm,空気量 4.5%±1.5%が得られるよう に、単位水量および AE 剤を用いて調整した。スランプ 試験は JIS A 1101,空気量試験は JIS A 1128 に準拠して行 った。

3.2 施工性

プラントからケーソン模擬供試体の製作ヤードまで の,アジテータ車による運搬時間は 10~15 分程度であ った。プラントと製作ヤードで行ったスランプと空気量 の試験結果を表-6 に,製作ヤードで行ったスランプの 試験状況を**写真-2**に示す。 シェルコンクリート (SS25, SS50) の運搬によるフレ ッシュ性状の経時変化は,普通コンクリート (SS0) と 同程度であった。

図-7 ケーソン模擬供試体

試験項目	物性值	規定値	試験方法
表乾密度(g/cm ³)	2.61		US A 1100
吸水率(%)	2.12	3.0以下	JIS A 1109
微粒分量(%)	12.0	7.0 以下	JIS A 1103
有機不純物	淡い	淡い	JIS A 1105
NaCl含有量(%)	0.004	0.04以下	JASS 5T 202

表-4 シェルサンド (SS) の物性 (実証試験)

図-8 粒度分布(実証試験)

뉡분	水セメント比	シェルサンド		単位量(kg/m³)				$C \times (\%)$		
市山方	W/C (%)	置換率(%)	W	С	SS	S①	S ②	G	Ad	AE 剤*
SS 0		0	147	294	0	260	607	1056	0.40	1.25A
SS25	50	25	161	322	200	0	599	1056	0.40	1.50A
SS50		50	173	346	368	0	369	1056	0.40	2.25A

表-5 コンクリート配合(実証試験)

*1A=0.004%

÷1 ₽	試験場所	スランプ	空気量	コンクリート
記方		(cm)	(%)	温度(℃)
55.0	プラント	14.0	4.8	—
550	製作ヤード	12.5	4.1	25.0
9925	プラント	15.5	4.1	—
5525	製作ヤード	13.5	3.9	25.0
SS50	プラント	16.0	4.7	—
	製作ヤード	14.0	4.0	25.0

表-6 スランプおよび空気量の試験結果

写真-2 スランプ試験状況

施工は2リフトで行い,いずれのリフトもコンクリー トポンプ車のブームによるコンクリートの打込みを行 った。圧送時のポンプ圧力は,いずれも同じであり,ポ ンプの閉塞や材料分離等もみられず,シェルコンクリー トのポンプ打設への適用性が確認された。

目視によるワーカビリティーおよびブリーディング の評価では、シェルコンクリートと普通コンクリートに 大きな違いはみられなく、流動性や鉄筋部への充填状況 も良好であった。

なお,表-7に示す事前に行った室内試験によるブリ ーディング(JISA1123)と凝結時間(JISA1147)の試 験結果では,ブリーディングに顕著な違いはみられなか ったが,シェルサンド置換率の増加に伴い,凝結時間は 遅くなる傾向にあった。

3.3 打継ぎ性状

1 リフトと2 リフトとの打継ぎ間隔は9日間として, 打継ぎ部は1 リフトのコンクリート打込み翌日にワイヤ ブラシを用いてレイタンス処理を行った。写真-3 にレ イタンス処理後の打継ぎ部を示す。

シェルコンクリートの打継ぎ性状を確認するため,厚 さ0.4mの2方向の壁部材(中壁と左壁)中央付近から, 打継ぎ面に対して水平方向にそれぞれ φ75×400mmの コアを採取(写真-4)し,引張(割裂)強度試験を行 った。試験用のコア供試体は寸法を φ75×100mmとし, 採取したコアの中央付近から2本成形し計4本とした。 打継ぎ部のコア引張強度の試験結果を表-8に示す。同 表には参考値として,製作ヤードで採取し,材齢28日

表-7 ブリーディングおよび凝結時間の試験結果

	ブリーデ	「ィング	凝結時間		
記号	Bq	Br	始発時間	終結時間	
	(cm^3/cm^2)	(%)	(h)	(h)	
SS 0	0.094	2.51	6.5	9.3	
SS25	0.089	2.16	7.1	9.6	
SS50	0.109	2.34	7.7	10.6	

Bq:ブリーディング量, Br:ブリーディング率

写真-3 レイタンス処理後の打継ぎ部

まで標準養生(20℃水中)を行った標準供試体(φ150×200mm)の引張強度の試験結果も示す。

打継ぎ部の引張強度は、いずれも標準供試体の引張強 度に比べては低下しているものの、シェルコンクリート (SS25, SS50)の打継ぎ性状は、普通コンクリート(SS0) と同等の品質が確保できることが確認された。

なお,コア採取時の外観調査では,いずれのケーソン 模擬供試体にも,隅角部等に大きな不良箇所はみられな かった。ケーソン模擬供試体の全景を**写真-5**に示す。

表-8 引張(割裂)強度の試験結果

퀽분	引張強度(N/mm ²)					
口与	打継ぎ部のコア供試体	標準供試体				
SS 0	2.48	3.21				
SS25	2.66	3.51				
SS50	2.32	3.35				

写真-4 コア採取状況

4. まとめ

海中暴露および気中暴露を行っているシェルコンク リートの材齢1年における圧縮強度や塩分浸透性,また, 凍結融解試験結果によるシェルコンクリートの耐凍結 融解抵抗性は,普通コンクリートと同程度であることが 確認された。

鉄筋コンクリートへの適用を目指した実証試験では, シェルコンクリートの施工性や打継ぎ性状,また,鉄筋 部への充填状況等は普通コンクリートと同等であるこ とが確認された。

現在も,製作したケーソン根固ブロックや,各種供試体の暴露試験を継続している。今後,長期のデータを測定し、シェルコンクリートの各種耐久性能について把握するとともに、用途の拡大に向け、更なる検討を進めていく予定である。なお、シェルコンクリートの鉄筋コンクリートへの適用に向け、鉄筋コンクリートの構成材料としての評価についても、各種強度の面から検討を進めている。

あとがき

本研究は国土交通省東北地方整備局,(独)港湾空港技 術研究所,早稲田大学,日本国土開発(株)の共同技術開 発として実施しているものである。

ケーソン模擬供試体の製作に関する実証試験にあた っては、事業者である国土交通省東北地方整備局八戸港 湾・空港整備事務所の関係者各位,また,施工者の(株) 柏崎組の方々には,多大なるご協力をいただきました。 ここに,深く感謝の意を表します。

写真-5 ケーソン模擬供試体の全景

参考文献

- 山内匡,清宮理,横田季彦,八木展彦:ホタテ貝殻 を細骨材として活用したコンクリートの基本的性 質,コンクリート工学年次論文集,Vol.28,No.1, pp.1649-1654,2006.7
- 山内匡,清宮理,横田季彦,若崎正光:ホタテ貝殻 を細骨材として活用したコンクリートによるケー ソン根固めブロックの製作,コンクリート工学年次 論文集, Vol.29, No.2, pp.487-492, 2007.7