論文 PC 連続桁の列車走行性に関する研究

宇野 匡和*1·曽我部 正道*2·谷村 幸裕*3·渡辺 勉*4

要旨:本研究では、6つの代表的なPC連続桁橋りょうを取り上げ、車両と構造物との動的相互作用を考慮した数値実験により、その列車走行性を検討した。その結果、連続桁上での列車走行性は、列車速度の増加に対して単調に増加していく傾向にあること、中間支点で角折れに伴う輪重抜けが発生しないため走行安全性の照査は単連の限界値を用いて行えばよいこと、乗り心地の照査は単純桁として個々の側径間及び中央径間の両者で独立して照査しておけばよいこと、たわみ量の算定では動的相互作用を考慮しなくてもよいこと、などを明らかにした。

キーワード:鉄道橋梁,連続桁,走行安全性,乗り心地

1. はじめに

ー定間隔で連続する構造物のたわみ形状は、車両の振 動系に対して「起振機」と見なすことができる。また、 近年みられるような列車の高速化により、特に中長スパ ンにおいて、桁のたわみによる加振振動数が車両の固有 振動数に近づき、車体の動揺が大きくなる。

鉄道構造物の設計において、車両の走行性を確保する 方法としては、桁のたわみを制限する手法が一般的であ り、その検討は東海道新幹線建設を契機に始まった¹⁾。 その後、佐藤、三浦²⁾は、車両を半車両モデル、桁を正 弦波くぼみとし、車体の定常加速度からたわみの制限値 を求めている。この研究成果は、1972年制定の全国新幹 線網建造物設計標準に取り入れられている。また、松浦 ³⁾は、車両を半車両モデル、桁を有限個の半正弦波たわ み形状(桁端には軌道剛性を考慮した処理を行う)とし、 輪重変動率と車体加速度の両面から桁のたわみ量の制 限値を求めた。曽我部は、車両をフルモデル、桁を前述 と同様の有限個の半正弦波モデルとして、たわみ量の制 限値を求めるとともに、実車測定による検証も実施し、 これが現在の技術基準の根拠となっている⁴⁾。

しかしこれらの検討はいずれも単純桁に着目したも のであり,連続桁に関する現象解明や設計法の整理は, 一部の長大橋梁を除けば⁵ほとんどなされていないのが 実状である。この背景としては,連続桁のスパン割の組 み合わせが多いこと,動的挙動が高次モードの影響を受 けること,主桁断面諸元が橋軸方向に変化すること等か ら,理論式による一般化が困難であることが挙げられる。

以上のような背景から、本研究では、6 つの代表的な PC連続桁橋梁を取り上げ、新幹線車両と鉄道構造物との 動的相互作用解析プログラム DIASTARSII⁶⁾を用いて、数 値実験を行い,以下の課題について検討することとした。 (1)連続桁上での列車走行性に関する基本挙動を明らか にする。

(2)単純桁の照査法をベースとして、合理的かつ簡易な連続桁上で列車走行性の照査方法を提案する。

2. 解析手法

2.1 車両モデルの力学モデル

図-1 に車両の力学モデルを示す。車両は、車体、台車、輪軸の各構成要素を剛体質点と仮定し、これら剛体 質点をばね、ダンパで結合して力学モデルを構成した。 各車両の連結は、上下についてばね、ダンパで結合した。 一部、図に示すように非線形ばねを用いているが本解析 においては、線形範囲での解析である。具体的な車両諸 元は、近年の高速新幹線車両を参考に仮定した。主な入 力諸元(空車時)は、車両長 25m、車体質量 32.0t、台車 質量 3.0t、輪軸質量 2.0t、空気ばね定数(1台車片側)鉛 直 300kN/m、空気ばね減衰定数(1台車片側)鉛直 50kN/s・ m、軸ばね定数(1 軸片側) 1200kN/m、軸ばね減衰定数

図-1 車両の力学モデル

*1 (財)鉄道総合技術研究所 構造物技術研究部 コンクリート構造 工修 (正会員)
*2 (財)鉄道総合技術研究所 鉄道力学研究部 構造力学 博(工) (正会員)
*3 (財)鉄道総合技術研究所 構造物技術研究部 コンクリート構造 博(工) (正会員)
*4 (財)鉄道総合技術研究所 鉄道力学研究部 構造力学 工修 (正会員)

橋梁名	径間数	スパン長 <i>L_b</i> (m)	桁種別	断面諸元		
				ヤング係数	断面 2 次	荷重
				E (kN/mm ²)	モーメント I(m ⁴)	(kN/m)
P203	3	44.0+72.0+44.0	PC 箱形桁	31	20.834	418.33
N203	3	44.0+60.0+44.0	PC 箱形桁	31	9.861	364.17
U203	3	64.0+84.0+64.0	PC 箱形桁	31	6.170	441.83
P204	4	44.0+72.0+72.0+44.0	PC 箱形桁	31	20.834	418.33
N204	4	44.0+60.0+60.0+44.0	PC 箱形桁	31	9.861	364.17
U204	4	64.0+84.0+84.0+64.0	PC 箱形桁	31	6.170	441.83

表-1 対象橋梁と断面諸元

※ 断面 2 次モーメントは中央径間の最小値を荷重は中央径間の平均値を示している。

図-3 解析モデル(U203橋梁)

(1 軸片側) 40kN/s・m である。この力学モデルを 16 両 連結して解析に用いた。

2.2 構造物の力学モデル

表-1 に解析対象橋梁とその平均的な断面諸元を示す。 ヤング係数は,鉄道構造物等設計標準・同解説(コンク リート構造)に従い,31 kN/mm²とした。

対象橋梁は,新幹線鉄道 PC 連続桁の諸元に基づき,3 径間連続桁3橋と4径間連続桁3橋をモデル化した。図 -2に解析対象橋梁の例として,U203橋梁の3径間連続 PC 箱形桁の一般図を示す。

DIASTARSII では、任意の構造形式を有限要素により 構造物をモデル化することができる。図-3に3径間連 続桁の解析モデルの例を示す。橋梁は梁要素でモデル化 し、3径間連続桁と4径間連続桁ともに0.2m間隔で節点 を設けた。

これらのモデル橋梁には、いずれもゴム支承が適用さ れているが、解析モデルでは単純支持とした。支承構造 の単純化については、単純桁の実測等により単純支持と しても良い精度が得られることを確認している⁴⁾。

桁の線形の動的問題では,減衰定数の影響が非常に重要となる。桁の減衰定数 ξ は,単純桁における測定値を 参考に 2%を用いることとした^{4),7)}。この値には支承の減 衰効果もマクロに含まれている。

車両の輪重変動とは、車両が走行することにより生じ

図-4 車輪/レール間の鉛直方向の力学モデル

る1車輪あたりの重量である動的輪重から車両の静止状 態時の1車輪あたりの重量である静止輪重を差し引いた 変動分の荷重であり、車輪の走行面、即ちレール頭頂面 の線路方向への曲率の影響を受ける。桁のたわみにより 桁端部の桁上面には曲率無限大となる角折れが生じる が、本研究では、この区間のレール頭頂面の曲率が適切 に表現できるように、レールと軌道パッドからなる軌道 構造をモデル化した⁴。

2.3 車輪とレール間の力学モデル

図ー4に車輪とレール間の鉛直方向の力学モデルを示 す。輪軸が剛で、車輪とレールがそれぞれ二次曲面から 構成されている場合、車輪とレールの接触力Hと相対変 位 δ_z はHertzの接触ばねにより式(1)のように表せる。

$$H = H(\delta_z) = H(z_R - z_w + e_z + e_{z0}) \ge 0$$
(1)

ここに、*z_R とz_W*はそれぞれレールと車輪の接触点における鉛直変位、*e_z* は**図ー4**に示すレール上に存在する鉛直

方向の軌道狂い, e_{z0} は車輪とレールの接触点における 車輪の直径の初期接触点からの変動量である。本研究で は,鉛直方向の検討が目的であるので水平方向に関して は自由度を拘束して解く。

2.4 数值解析法

効率的な数値解析を行うために、車両及び構造物に関 する運動方程式をモーダル変換し、モーダル座標系上の 運動方程式を、*Newmark*の平均加速度法により時間増分 Δt 単位に解いていく。ただし、運動方程式が非線形で あることから、不釣合力が十分小さくなるまで Δt 内に おいて反復計算を行う。

3. 解析結果

3.1 振動モード

表-2に全橋梁の固有振動数と共振速度を示す。図-5 に U203 橋梁の振動モードを示す。連行移動荷重による 共振速度 *V* は,式(2)より求まる。

$$V = f \cdot L_{v} \tag{2}$$

ここに, *f* は橋梁の基本固有振動数, *L*_v は車両長である。 3.2 時刻歴波形

図-6に P203 橋梁及び P204 橋梁における,列車速度 340km/h, 16 両編成,単線載荷における構造物のたわみ と車両の輪重変動率と車体加速度の時刻歴応答波形を

示す。輪重変動率とは,輪重変動を静止輪重で除した値 である。図より,桁のたわみより側径間において共振が 発生していることが分かる。車体加速度はスパン長/列車 速度を振動数として正弦波状に生じていること,輪重変 動率と車体加速度は相似形であり,輪重変動の大部分は 車体振動により生じていること,単純支持となっている 橋梁始点の桁端で角折れによる輪重減少が生じている ことなどが分かる⁴⁾。単純桁が連続する場合には桁間の 支点の位置で桁上面の曲率が無限大となり,局所的な輪 重抜けが生じるが(図-7 参照),連続桁の場合にはこの輪 重抜けが生じていないのが特徴的である。

3.3 列車速度と列車走行性の関係

図-8 に列車速度と列車走行性の関係を示す。列車走行 性のうち走行安全性については、輪重減少率(負側の輪

重変動率)で評価を行った。走行安全性は,鉄道構造物 等設計標準・同解説(変位制限)⁸⁾に従い,複線同時同 方向載荷,最大積載(350%乗車)で照査した。輪重減少率 の限界値は37%とした。この値は,橋梁上で軌道狂いが 発生しても,車両が走行安全限界に至らないように,構 造物の変位に対する限界値として定められたものであ る。図より,たわみは,U203橋梁及びU204橋梁におい て他の橋梁と比較して値が大きくなっている。これは, 他の橋梁に比べ剛性が低いためである。輪重減少率は速度の増加とともに増加する傾向にあり、例えば P203 橋梁では列車速度 360km/h で 5.4%となった。この値は、限界値 37%に対して十分余裕のある値であると言える。他の5橋梁にいても限界値より小さい値となった。

列車走行性のうち乗り心地については、台車直上の最 大車体加速度に基づいて式(3)により評価を行った。乗り 心地の照査は、鉄道構造物等設計標準・同解説(変位制

限)に従い、単線載荷、定員積載で評価を行い、評価に 用いた鉛直方向の車体加速度の限界値を式(3)に示す。

$$\begin{cases} \alpha_{v1} = 2.0 & f < 1.5 \\ \alpha_{v1} = 3.0/f & 1.5 \le f < 6.0 \\ \alpha_{v1} = 0.5 & 6.0 \le f \le 20.0 \end{cases}$$
(3)

ここに, α_{v1}:鉛直方向の車体の振動加速度の限界値(m/s²) *f*:振動加速度の振動数(Hz)

図-8 から,最大車体加速度は速度の増加とともに増加する傾向にあり,例えば P203 橋梁では列車速度 360km/h で 0.13m/s² となった。この値は,限界値を満たし,他の5橋梁においても限界値を満たす値であった。

これらの図から,橋梁のたわみの共振点において,列 車走行性が低下する傾向にあることが読み取れるが,そ れ以上に列車速度の影響が大きいものと考えられる。列 車速度の増加に対して橋梁のたわみが一定であっても, 列車走行性は大きく低下していることが分かる。

4. PC 連続桁上での列車走行性照査法

以上のような数値解析結果に基づき,単純桁の照査法 をベースに PC 連続桁上での列車走行性の照査方法につ いて考察する。図-9 に走行安全性に関する検討結果を 示す。図中に示したたわみによる照査は,通常の構造物 の設計を想定したもので、列車荷重によるたわみを静的 解析により求め、これに適切な衝撃係数を乗じて動的な 応答値を算定する手法である。このたわみを限界値と比 較して照査する。表-3、表-4に走行安全性から定まる 桁のたわみの限界値を示す。一方、輪重減少率による照 査は、車両と構造物の全体をモデル化し、両者の相互作 用を考慮して輪重減少率の応答値を算定して照査を行 う手法である。図からたわみによる照査で単連の限界値 を用いれば十分な精度が得られることが分かる。これは 図-7 でも示したように、単純桁が連続する場合には桁 間の支点の位置で桁上面の曲率が無限大となり、局所的 な輪重抜けが生じるが、連続桁の場合にはこの輪重抜け が生じていないことに起因している。

図-10 に乗り心地に関する検討結果を示す。検討の方法は、走行安全性と同様である。表-5 に乗り心地から定まる桁のたわみの限界値を示す。図からたわみによる照査は、動的相互作用を考慮し求めた車体加速度の値と比較して比較的精度良く捉えているものと推定される。 乗り心地の照査は、単純桁として個々の側径間及び中央径間の両者で独立して照査するのがよい。

図-11 に桁のたわみ量算定における動的相互作用の 影響について示す。ここでは車両を,動的相互作用を考 慮しない 16 両編成の定荷重列として解析を行い車両と 構造物の動的相互作用を考慮した場合と比較して示し た。図から動的相互作用を考慮した場合には,最大たわ みが若干減少することが分かる⁴⁾。単位長さ当たりの新 幹線車両重量と主桁重量の比は概ね1:16~1:20程度であ るため,動的相互作用力の影響は小さいと考えられる。

5. まとめ

6 つの代表的な新幹線 PC 連続桁橋梁を取り上げて数 値実験を行い,以下の知見を得た。

- (1)連続桁上での列車走行性は、列車速度の増加に対して 単調に増加していく傾向にある。
- (2)連続桁の照査において、中間支点で角折れに伴う輪重 抜けが発生しないため走行安全性の照査は単連を適 用して照査を行ってよい。
- (3)連続桁の照査において、乗り心地の照査は単純桁の連続に準じればよく、側径間および中央径間の両者で独立して行なえばよい。
- (4)連続桁の照査において、たわみ量の算定を動的相互作用を考慮しない定荷重列で解析を行なっても動的相互作用との誤差の影響は少ないと判断される。

参考文献

 松平精:橋梁のたわみによる折角限度,東海道新幹 線に関する研究(第2冊),鉄道総合技術研究所,

図-11 たわみ量算定における動的相互作用の影響

表-3 走行安全性から定まる桁のたわみの限界値(単連)

最高速度	スパン長 <i>L_b</i> (m)
(km/h)	$10 \sim 100$
260	<i>L_b</i> /700
300	<i>L_b</i> /900
360	$L_b/1100$

表-4 走行安全性から定まる桁のたわみの限界値(複数連)

最高速度	スパン長 <i>L_b</i> (m)		
(km/h)	$10 \sim 60$	$70 \sim 100$	
260	$L_b/1200$	$L_b/1400$	
300	$L_b/1500$	$L_b/1700$	
360	$L_b/1900$	$L_b/2000$	

表-5 乗り心地から定まる桁のたわみの限界値(複数連)

最高速度	スパン長 <i>L_b</i> (m)			
(km/h)	10~20	30	40 ~ 100	
260	$L_b/2200$	$L_b/1700$		
300	$L_b/2800$	$L_b/2000$		
360	$L_b/3500$	$L_b/2800$	$L_b/2200$	

pp.202~206, 1961.

- 佐藤吉彦,三浦重:走行安全ならびに乗心地を考慮した線路構造物の折角限度,鉄道技術研究報告, No.820, 1972.
- 松浦章夫:新幹線における橋桁の鉛直たわみの許容
 限度,鉄道技術研究報告, No.894, 1974
- 5) 曽我部正道,松本信之,涌井一,金森真,椎本隆美: PC 斜張橋(北陸新幹線第2千曲川橋梁)の衝撃係 数・列車走行性に関する研究,構造工学論文集, Vol.44A, pp.1333-1340,1998
- 6) 涌井一,松本信之,松浦章夫,田辺誠:鉄道車両と 線路構造物との連成応答解析法に関する研究,土木 学会論文集,No.513/I-31, pp.129-138, 1995
- 石橋忠良,長田晴道:コンクリート橋の衝撃係数(新 幹線),構造物設計資料,No.68,pp.3-7,1981
- 鉄道総合技術研究所:鉄道構造物等設計標準・同解 説(変位制限),丸善,2006.