論文 水平接合面を有する PCa 合成梁の構造性能

丸田 誠^{*1}·高稻 宜和^{*2}·永井 覚^{*3}·前田 祥三^{*4}

要旨:下部PCa部分(60N/mm²)と上部現場打設部分のコンクリート強度(30N/mm²)が異なり,水平接合面を有 する合成梁の構造実験を行った。せん断スパン比 M/QD=2.5 (通常スパン)と M/QD=1.5(短スパン)のせん断破 壊型合成梁の実験を中心に行い,昨年度実施した曲げ破壊,付着破壊型の実験も併せて評価を行った。その 結果,スラブ付き合成梁のせん断強度は,下部コンクリート強度(Fc60N/mm²)で合成梁を矩形梁として,せん 断強度を十分安全側に評価でき,付着割裂強度は上部コンクリート強度で上端筋低減係数を無視して算定し ても,安全側に評価できることが分かった。

キーワード:水平接合面,合成梁,異種コンクリート強度,せん断強度,付着割裂強度

1. はじめに

近年,超高層鉄筋コンクリート建物の架構には,プ レキャスト(以下 PCa)部材が用いられることが多くなっ てきている。梁部分には図-1(a)に示すような下部ハ ーフ PCa 部材を用いることが多く,梁上部のコンクリー トおよび床コンクリートを現場打設した合成梁となる。 しかし多くの場合,スラブ部分の必要コンクリート強度 は梁の必要コンクリート強度に比べ低い場合が多く,そ の際,現場打設梁コンクリートとスラブコンクリートを 打ち分ける必要があり,施工が複雑になっている。また, 遮音の問題からスラブが厚くなってきておりスラブの 拘束効果(図-1(c)参照)は以前より大きくなってい ると推察される。この拘束効果で,梁上部コンクリート 強度が低くてもせん断や付着割裂強度の低下は相殺さ れると考えられる。

昨年度,施工性向上のため梁上部および床スラブを下 部 PCa 部(Fc60N/mm²)より低強度のコンクリート (Fc30N/mm²)とした合成梁の構造性能を確認した¹⁾。その 結果,スラブを付加し水平接合面のすべりをU形筋で防 止した合成梁は,1)せん断強度は全体を下部の高強度コ ンクリート矩形梁として評価できた,2)コンクリート強 度が異なる部分(上下)の付着割裂強度は,それぞれの 強度(Fc)で算定可能なことを示した。ただし,せん断破 壊型の試験体は1体のみであったため,今年度はせん断 破壊型の試験体を中心に 6 体の実験を行った。評価は, 昨年度報告した 13 体の実験^{1),2)}も含め総合的に行なう。

2. 実験計画

試験体はハーフ PCa 梁部材を中心とした6体とした。 試験体の一覧を表-1に、配筋例を図-2に示す。試 験体の因子の関係を表-2中に示す。この表中には全試 験体の相関関係も示した。試験体の縮尺は実物の約 1/2 とした。BDF14~BDF18は付着割裂破壊より、せん断破 壊を先行させるため、試験体のせん断スパン比(以下 M/QD)を2.5とした。

Fc60 矩形一体打ちの BDF14 は比較用基準試験体で, BDF15~BDF17 はスラブ付き T 形合成梁とした。BDF15 はスラブ厚 t を t=75mm とし, BDF16 は t=150mm, BDF17 は t=200mm とスラブ厚を増加させている。BDF14 と BDF15~BDF17 を比較することにより,スラブ厚さ t が せん断強度に与える影響について検討する。スラブ下面 までを PCa とすることを基本としたが,スラブ厚 t=75mm の BDF15 は,図-1 (b) 右に示すように凹形状のハーフ PCa 梁に通常なるが,試験体の簡略のため,水平接合面

表一1 註	「験体ー	覧
-------	------	---

		-										
	BDF14	BDF15	BDF19									
断面形状	矩形	THE										
B×D		250 × 400 mm										
スラブ	無し	片幅(ba) 200mm 全幅 650mm 厚さ(t) 75mm	片幅(ba) 200mm 全幅 650mm 厚さ(t) 150mm	片幅(ba) 200mm 全幅 650mm 厚さ(t) 200mm	片幅 (ba)200mm 全幅650mm (片側15mm のみ込) 厚さ(t) 150mm	片幅(<i>ba</i>)120mm 全幅490mm 厚さ(<i>t</i>)75mm						
せん断スパン [せん断スパン比]			1500mm [1.5]									
コンクリート強度 Fc(N/mm²)	60	60 30(梁上部), 30(スラブ部), 60(梁下部)										
主筋			16-D19 SD590 16-D22 SD490									
[引張鉄筋比]		[2.30%] [3.10%]										
スラブ筋	無し	無し D6 SD295										
梁部補強筋 [横補強筋比]		2-D65 @ [0.4	4-D10SD785 @75 [1.52%]									
接合面処理	-	- 木ゴテならし + レイタンス除去										
U形筋	-		2-D13SD345@75									

太字が今年度の試験体 (Fc30+Fc60): 左が上部コンクリート, 右が下部PCaコンクリート t:スラブ厚(mm) *:水平面のすべり破壊となった

強度に与える影響を把握するために(BDF16との比較), 両側に幅15mmのテフロンシートを貼り付け,この領域 の梁とスラブ間を絶縁している。M/QD=1.5のT形合成 梁 BDF19(t=75mm)は昨年のBDF4(矩形, Fc60), BDF9

表-3 使用鉄筋の機械的性質

		降伏点	引張強さ				
鋼種	材質	σy	σ tu	用途			
		(N/mm ²)	(N/mm ²)				
D6	SD295	345	510	横補強筋,スラブ筋 (BDF14-19)			
D10	SD785	864	1064	横補強筋 (BDF19)			
D13	SD345	379	528	U形筋(挿し筋) (BDF15-19)			
D19	SD590	621	836	梁主筋 (BDF14-18)			
D22	SD490	517	686	梁主筋 (BDF19)			

(T 形合成梁, t=150 mm)¹⁾ と比較するもので, 付着割裂破壊が先行するよう設計している。 BDF19 と BDF4, BDF9 を比較することにより,ス ラブ厚さが付着割裂強度に与える影響について把 握する。また,いずれの試験体も,接合面水平せ ん断すべり破壊を防止するように設計し^{1),4)},必 要な場合は U 形筋で補強した。なお, M/QD=2.5 の梁は想定建物スパン 4.6m, M/QD=1.5 の梁は想 定建物スパン 3.0m とし,1/2 の縮尺でスラブ幅 ba をそれぞれ 200mm, 120mm 以外は, BDF15 と同様な 断面としている。

鉄筋の機械的性質を表-3に、実験時の封緘養 生供試体から求めたコンクリート強度を表-5中 に示す。

加力は地震力を想定した大野式逆対称載荷で行った。制御は梁部材変形角で行い,交番繰り返しで R=0.25%~4%rad.の変形角を与え,最終では R=10%rad.まで押し切った。計測は主要な変形と 鉄筋のひずみについて行った。

3. 実験結果

3.1 実験経過および変形性能

表-4に実験結果の一覧を示す。各試験体のせん断力と梁部材変形角 R の関係を図-3に示す。

この図中には最大強度近傍の R=40×10⁻³ (4%) rad. 時の各試験体のひび割れ状況を示す。せん断力は左右の 梁の平均,変形角は剛なスタブ間の変形をクリアスパン で除して求めた。図-3中に AIJ・RC 規準の梁曲げ略算 式から得られた計算強度,終局強度型設計指針⁵⁾(以下,

表-4 実験結果一覧

試験体	曲げひび割れ		せん断ひび割れ		付着ひび割れ		1段目主筋降伏		2段目主筋降伏		スラブ筋降伏		横補強筋降伏		最大強度	
	Q (kN)	R (X10 ⁻³ rad.)														
BDF14	26.0	0.233	166	4.20	-	-	332	16.5	-	-	-	-	193	5.27	332	16.5
BDF15	25.8	0.240	151	3.01	-	-	443	15.6	452	16.6	147	2.91	275	7.26	468	20.1
BDF16	30.6	0.300	169	3.61	284	30.1	403	13.1	446	16.0	140	2.81	245	6.29	485	40.1
BDF17	25.8	0.240	152	2.81	401	34.2	432	13.5	450	14.8	123	2.06	379	11.12	496	40.1
BDF18	21.1	0.173	165	3.31	-	-	443	15.5	459	18.1	154	3.01	339	9.80	475	37.0
BDF19	51.4	0.292	200	1.71	-	-	649	10.8	767	14.0	264	2.75	794	35.98	810	19.3
-	_															

注)正側の値

1) F:曲げ破壊, FS:曲げ降伏後せん断破壊, FB:曲げ降伏後付着破壊, B:付着破壊, S:せん断破壊, SL:せん断スリップ破壊 2) 上端筋に対する低減は考慮せず 3) *Q_{hu}=(Σφ・τ_{hu}, j,)* 4) *τ_u=μ・Ps・σ_{wv}<0.3 σ_B(σwy≦800N/mm²) 5) τ m=Qm/(0.9db)* 終局指針と称す)の降伏ヒンジ回転角 Rp を考慮したせ ん断強度,付着割裂強度計算値を示す。スラブ付きの試 験体ではスラブ筋を曲げ強度算定時に考慮した。この図 中のせん断強度は合成梁の場合上下それぞれのコンク リート強度に基づく計算値を示し,付着割裂強度は,上 部のコンクリート強度で算定した。

BDF14~18は、R=0.17~0.30×10⁻³rad.で梁付根位置に 曲げひび割れが、R=2.8~4.2×10⁻³rad.でヒンジ領域に、 せん断ひび割れが観察された。矩形一体梁 BDF14 は R=5.3×10⁻³rad.で横補強筋が降伏した後も変形の増大と ともにせん断力も上昇し, R=20×10⁻³rad.に向かう途中, せん断圧壊が生じてせん断力が低下した。T 形合成梁 BDF15~18 は、R=13~16×10⁻³rad.程度で1 段目梁主筋 が、R=15~18×10⁻³rad.程度で2段目梁主筋がそれぞれ降 伏し,梁付根の曲げひび割れが大きく開口すると共に, 剛性が低下し、曲げ降伏となった。曲げ降伏後、BDF15 (t=75mm) は梁の Fc30 部分からスラブに向かってせん 断圧壊が進展し、せん断力が低下した。BDF16(t=150mm)、 BDF17 (t=200mm), BDF18 (t=150mm, のみ込み考慮) はコンクリート強度の高い梁下部(Fc60)がせん断圧壊 し, せん断力が低下した。その後, BDF17, BDF18 は, R=40×10⁻³rad.の繰返し載荷中, せん断破壊の進展ととも に、ヒンジ域から部材中央部に向かって梁下端2段筋の 付着割裂破壊が進展した。BDF15~18は付着の影響も大 きいが、曲げ降伏後のせん断破壊であった。

M/QD=1.5の BDF19 (t=75mm) は, R= 0.3×10^3 rad.程 度で梁付根位置に曲げひび割れが, R= 1.7×10^3 rad.程度 でヒンジ領域(梁端部から1D区間)にせん断ひび割れ が観察された。R= 5×10^3 rad.のサイクルで上端2段筋に 沿った付着割裂ひび割れが観察され, R= 20×10^3 rad.のサ イクルまでに梁主筋が2段とも降伏し,梁付根の曲げひ び割れが大きく開口すると共に,剛性が低下し,曲げ降 伏となった。R= 40×10^3 rad でU形筋および横補強筋が 降伏して水平接合面のすべりが顕著となった。BDF19の 破壊形式は,水平接合面のすべりを伴う,曲げ降伏後の せん断破壊となった。スラブ厚さが異なるM/QD=2.5の BDF14(矩形一体), BDF15(T形合成梁, t=75mm), BDF16

(T形合成梁, t=150mm), BDF17(T形合成梁, t=200mm), BDF18(T形合成梁, t=150mm,のみ込み考慮)のせん 断破壊型の4体を比較すると,矩形一体梁のBDF14は曲 げ降伏以前にせん断破壊したが,他のT形合成梁は曲げ 降伏しており,スラブが取り付くことによりせん断強度 が41~44%上昇した。また,BDF15はR=40×10⁻³radま でにせん断力が低下し始めたが,BDF16,BDF17ではせ ん断力の低下が見られなかったことから,スラブが厚い ほどせん断力が低下し始める変形は大きくなると推察 される。また,t=150mmのBDF16とBDF18を比較する と、R=37×10³rad.までは同様の性状を示し、のみ込みが せん断強度に与える影響は殆ど無いことが分かった。

実験結果の検討

4.1 各種強度計算値との比較

表-5に各最大強度計算値と実験結果を示す。上下の コンクリート強度が異なる試験体では、せん断強度はそ れぞれの強度で、付着割裂強度は低い方の強度で算出し た。なお、合成梁は上端筋に対する付着強度低減係数 (0.8) は考慮していない。

4.2 せん断強度

昨年度実施の試験体も併せた,せん断強度計算値 (Rp=0 と Rp=0.02 の2ケース)と実験値の関係を図-4 (a)(b)に示す。なお図中には,林³⁾が行ったせん断破壊 型合成梁の試験体についても示している。縦軸は実験最 大強度を曲げ強度で除した曲げ指標を,横軸はせん断強 度を曲げ強度で除したせん断指標を示す。前述のように, スラブ付合成梁試験体のせん断強度は,それぞれの強度 を用いた矩形梁とみなして算定した。図中,中抜きは PCa 部コンクリート強度 (Fc60)で,中塗りは上部コンクリ ート強度 (Fc30) での計算結果を示す。

図-4(a)より, せん断破壊した合成梁試験体(破壊モード:S)では, 最大強度実験値は PCa 部コンクリート強度(Fc60) で算定した R_p=0 時のせん断強度計算値を上

回っている。また、せん断破壊した M/QD=2.5の矩形一 体梁 BDF14 (Fc60)では、せん断強度計算値は最大強度 実験値と良い対応を示したが、BDF14 と梁部の配筋は同 じでスラブが取り付いた BDF15~BDF18 は、最大強度実 験値と PCa 部コンクリート強度 (Fc60)で算定した $R_p=0$ 時のせん断強度計算値の比 $Q_m/Q_{su(Rp=0)}$ が 1.4 以上である にもかかわらず、曲げ降伏しており、せん断強度を過小 評価している。一方、せん断破壊した林らの試験体では、 コンクリート強度の打ち分け (Fc60、Fc30)や断面形状 (矩形、T 形) に関わらず、 PCa 部コンクリート強度 (Fc60)で算定した $R_p=0$ 時のせん断強度計算値は最大 強度実験値を過大評価した。これらの試験体はせん断破 壊より先に水平接合面でスリップ破壊していた可能性

図-4(b)は曲げ降伏後のせん断指標を表している。 せん断指標(Q_m/Q_{su(Rp=0.02)})が1以下の合成梁でも、せ ん断破壊の兆候は大変形時でも全く見られず、曲げ破壊 した試験体が多い。

があるため、過大評価となったと考えられる。

以上から,スラブを有する合成梁の Rp=0 時のせん断 強度,および Rp=0.02 時のせん断強度は, PCa 上部のコ ンクリート強度が 1/2 であっても, PCa 部(下部)のコ ンクリート強度を有する矩形梁とみなしたせん断終局 強度計算式により安全側に評価可能となった。この理由 として,スラブ効果により上部のコンクリート有効強度 係数が低下しないこと,およびスラブがアーチ作用に寄 与していること等が考えられる。

4.3 付着割裂強度

付着強度計算値(τ_{bu})と実験値の関係を図-5に示 す。 τ_{bu} は終局指針⁵⁾による計算値である。縦軸は実験 最大強度を曲げ強度で除した曲げ指標を,横軸は付着割 裂強度を設計用付着強度で除した付着指標を示す。合成 梁の付着強度計算には上部のコンクリート強度を用い た。図中には合成梁の場合,上部コンクリート打設時の 打設高さが低いことからブリージングは小さいと考え られるため,上端筋の低減係数(0.8)を無視した場合の計 算結果についても白抜きで示した。

付着指標 τ_{bu}/ τ_f が 0.65~0.71 で,1以下の付着割裂破 壊型の試験体でも、実験では曲げ降伏が先行した試験体 が多い。このことから計算上、τ_{bu} はスラブ付合成梁の 付着割裂強度を十分安全側に評価することが分かった。 4.4 破壊モード

R_p=0 および 0.02 時の付着余裕度(付着指標)とせん 断余裕度(せん断指標)の関係を図-6(a),(b)に示す。 各強度は,前述(4.2,4.3)と同様に算定した⁵⁾。

Rp=0時(図-6(a))では、計算上せん断破壊領域に 位置する T 形合成梁 BDF15~BDF18 は実験では曲げ降 伏が先行した。一方、計算上付着破壊領域に位置する合 成梁 BDF9, BDF19, 合成梁 BDF10 は実験では曲げ降伏 が先行している。これらは、スラブが取り付くことによ り、せん断強度および付着強度が上昇したため、曲げ破 壊領域に移行した。

Rp=0.02時(図-6(b))から,せん断破壊した BDF8, BDF14 および曲げ降伏後せん断破壊した BDF15~ BDF18は,計算上せん断破壊領域にあり,破壊モードを 概ね評価できている。

 Γ 形(片側スラブ付き)合成梁 BDF10 は、 $R_p=0.02$ 時には付着割裂破壊の様相を呈しており、破壊モードを表

現できている。一方,図上ほぼ同じ位置にある T 形合成 梁 BDF9 (t=150mm), BDF19 (t=75mm) は,曲げ降伏後 せん断破壊した。これは,スラブが取り付くことにより 付着割裂強度が高くなり,その効果が片側スラブ Γ 形の BDF10 より T 形の BDF9 と BDF19 方が大きいため,付 着破壊からせん断破壊になったと考えられる。

総合的には,図-6(b)より,せん断指標 1.0 かつ付着 指標 1.0 を上回るように合成梁を設計すれば,確実に曲 げ破壊となることが分かる。

4.5 スラブ効果を考慮したせん断強度

表-5,図-4に示すように、今回のスラブ付き合成 梁(BDF15~18)のせん断強度は、スラブ効果により計算 値より4割以上大きな値となった。AIJ 終局強度指針・ 靱性保証指針^{5),6)}には、耐震壁のせん断強度に側柱の断 面積がせん断強度に影響することが示されている。今回 この考え方に基づき図-7のようにスラブを側柱に見 立て検討する。せん断強度 *Qsu* は式(1)~(3)により算定す る。なお各式の記号は、文献5,図-7による。 *b, ba, t などの*値は、表-1,図-2による。 $Q_{su} = b \cdot l_{wb} \cdot p_w \cdot \sigma_{wy} \cdot \cot \phi + \tan \theta \cdot (1-\beta) \cdot b \cdot l_{wa} \cdot v\sigma_B / 2$ $\tan \theta = \left[\sqrt{(L/l_{wa})^2 + 1} - L/l_{wa} \right]$ $\cdot \cdot \cdot (1)$ $\beta = (1 + \cot^2 \phi) \cdot P_w \cdot \sigma_{wy} / (v \cdot \sigma_B)$ σ_{wy} は 25 σ_B 以下とする。 cot ϕ は以下の値の最小値とする。

 $\cot \phi = 2.0$ $\cot \phi = l_{wb} / (l_{wa} \cdot \tan \theta)$ $\cot \phi = \sqrt{v \cdot \sigma_{B} / (p_{w} \cdot \sigma) - 1.0}$ (2)

$$l_{wa} = D + \Delta l_{wa}, l_{wb} = D + \Delta l_{wb}$$

$$\Delta l_{wa} = (t + \sqrt{(b + 2ba) \cdot t^2 / b}) / 2 \qquad (3)$$

$$\Delta l_{wb} = D$$

今年度の合成梁試験体について,式(1)~(3)で算定した 結果(Rp=0時)を,図-4に倣い図-8に示す。この図よ り,スラブ効果を見込んだ計算値は,曲げ降伏後である が各試験体のせん断強度を概ね表現できることが分か った。

5. まとめ

下部PCa部分と上部現場打設部分のコンクリート強度 が異なる合成梁の構造実験から、下記に示すことが分かった。

- (1)スラブにより, せん断強度, 付着割裂強度は上昇する。 特にせん断強度は M/QD=2.5 の場合, 大幅に上昇した。
- (2)ハーフ PCa スラブ用のみ込み(絶縁)は、せん断強度 に影響を与えない。

- (3) スラブを付加した合成梁のせん断強度は,全体を下 部の高強度コンクリート矩形梁として既往の計算式 で安全に評価できた。
- (4) 付着割裂強度は、上部、下部のコンクリート強度で 上下端それぞれ安全側に評価可能である。ただし、上 部コンクリート打設時のブリージングは小さいため 上端筋の低減係数は考慮しなくてよい。
- (5) スラブを側柱に見立てた耐震壁のせん断強度算定の 考え方で、合成梁のせん断強度を安全側に評価できた。

参考文献

- 丸田誠,永井覚,渡邊茂雄,前田祥三:水平接合面 を有する PCa 合成梁の曲げせん断性状,コンクリー ト工学年次論文報告集, Vo29, No.3, pp.529-534, 2007.6
- 永井覚ほか:高強度材料を使用した高層 RC 造短ス パン梁の実験的研究,コンクリート工年次論文報告 集, Vol.17 No.2, pp.583-588, 1995.
- 林和也ほか:異種強度コンクリートを用いたプレキャスト RC 梁の力学性状に関する研究, AIJ 大会梗概集,構造II, 1994.9, pp.979-980
- 4) 日本建築学会:現場打ち同等型プレキャスト鉄筋コンクリート構造設計指針(案)・同解説(2002)
- 5) 日本建築学会:鉄筋コンクリート造建物の終局強度 型耐震設計指針・同解説 (1990)
- 6) 日本建築学会:鉄筋コンクリート造建物の靱性保証 型耐震設計指針・同解説 (1999)