論文 高強度コンクリートを用いた RC はりの斜め圧縮破壊に関する実験 的研究

小林 央治*1・渡辺 健*2・三木 朋広*3・二羽 淳一郎*4

要旨:超高強度コンクリートを使用することによる斜め圧縮破壊への影響を評価するため,圧縮強度が 100MPaを超える超高強度コンクリートを使用して RC はりを作製し,載荷試験を行った。実験結果から,超 高強度コンクリート使用下において,斜め圧縮破壊がある一部の領域に集中して発生すること,十分なせん 断補強を行うことによりこの集中した圧縮破壊領域が拡大し,RC はりの斜め圧縮破壊耐力が向上することが 明らかになった。また,これまでに提案されている斜め圧縮破壊する RC はりの耐力算定式では,耐力を適 切に評価するのが困難であることを確認した。

キーワード:斜め圧縮破壊,ウェブ圧縮破壊,高強度コンクリート,せん断補強,せん断耐力

1. はじめに

近年,高性能かつ高強度を有するコンクリートが,実 用化されてきている。特に,混和材料の開発に伴う技術 の進展は目覚ましく,100MPa を超える超高強度コンク リートの製造も可能となってきている。このような背景 の下,高強度コンクリートの性質を十分に活かすために, 鉄筋コンクリート部材(以下 RC)では,ウェブ厚が薄い I 型または T 型断面が使用され,橋梁では軽量化,長大化 が可能となっている。また,ウェブ厚の薄肉化に伴い, 斜め引張耐力を維持するため,高強度鉄筋による高密度 配筋も行われる。このような RC 部材では,斜め圧縮破 壊耐力が相対的に低下し,この破壊により終局に至るこ とが危惧される。

RCはりの斜め圧縮破壊に関する研究は少なく,その挙動については十分に把握されていない。そのため,土木 学会コンクリート標準示方書¹⁾でも,特に高強度コンク リートを使用した場合において,過度に安全側に評価す る算定式が提示されているのが現状である。

そこで本研究では,高強度コンクリートを用いた RC 部材の斜め圧縮破壊の性状を理解することを目的とし た。すなわち,圧縮強度100MPaを超える超高強度コン クリートを用いてウェブ厚が薄く十分せん断補強され た RC はりを作製し,載荷試験を行った。そして,超高 強度コンクリートを用いた RC 部材の斜め圧縮破壊耐力 を評価し,その挙動について検討した。さらに,コンク リートに関して異なる圧縮強度を有する RC 部材の斜め 圧縮破壊と比較することにより,コンクリートの高強度 化による斜め圧縮破壊への影響および既存の斜め圧縮 破壊算定式の適用性についても検討した。

2. 実験概要

2.1 供試体概要

表 - 1 に示す通り,供試体はコンクリートの圧縮強度 f'_c(35,65,100MPa),せん断補強鉄筋比r_w(=A_w/(b_ws))(1.0 ~ 4.0%)をパラメータとした。コンクリート圧縮強度 35, 65,100MPaを,それぞれ普通強度,高強度,超高強度と 呼ぶこととする。なお,表 - 1 に示したN1,N2,N3, H2,H3 は,既に著者ら²⁾によって報告されているもので ある。

供試体概要を図 - 1,表 - 2 に示す。供試体は,斜め圧 縮破壊が先行するように設計した。すなわち 軸方向には, 高強度鉄筋 (f_{wy}=1198MPa)を配置し,断面形状はI型断面 とすることで,十分な終局曲げ耐力を持つように設計した。 また,スターラップとして,高強度鉄筋 (f_{wy}=954MPa)を 高密度に配筋することにより,十分な斜め引張破壊耐力を 保つようにするとともに,ウェブ厚を薄くすることにより 斜め圧縮破壊を先行させた。なお,はり端部での破壊を防 ぐため,はり端部のコンクリート断面はマッシブなものと した。

表-1 実験ケース

供試	コンクリート圧縮強度	せん断補強鉄筋比				
体名	f'_c [MPa]	$r_w [\%]$				
N1	25	1.0				
N2	(普诵強度)	2.0				
N3		2.9				
H2	65	2.0				
Н3	(高強度)	2.9				
UH2	100	2.0				
UH3	100 (招高強度)	3.0				
UH4	(צוגנייובא)	4.0				

*1 東京工業大学大学院 理工学研究科土木工学専攻 (正会員)

*2 東京工業大学大学院 理工学研究科土木工学専攻 助教 Ph.D. (正会員)

*3 神戸大学大学院 工学研究科市民工学専攻 准教授 博(工) (正会員)

*4 東京工業大学大学院 理工学研究科土木工学専攻 教授 工博 (正会員)

2.2 使用材料および配合

表-3 に使用したコンクリートの示方配合を示す。コ ンクリートの流動性は,JISA 1150:2001 によるスランプ フローを指標とし, 混和剤量を調節することにより 650mm で管理した。また,材料分離抵抗性は,増粘剤量 を調節することにより管理した。表 - 4 に使用した鋼材 の概要を示す。

2.3 載荷方法および測定項目

実験は油圧式 2000kN 耐圧試験機により, a/d=3.0(せ ん断スパン 660mm)とする中央1点静的単調載荷を行っ た。支点は可動支点とするため,鋼製ヒンジを用い,試 験体と支圧板の間にテフロンシートとシリコングリス からなる減摩パッドを挿入した。

計測項目は,荷重,引張鉄筋およびスターラップのひ ずみ(計測位置は図 - 4 を参照),支間中央の変位から支点 部の変位の差分として得たたわみである。また,標点間 隔 150mmの π 型変位計を側面の曲げ引張側最下部に配 置し,曲げひび割れ幅を計測した。

3. 実験結果

3.1 試験結果

表 - 5 に,実験結果を示す。また,図-2 に,超高強

度コンクリートはり(UH2, UH3, UH4)の荷重-たわ み関係を示す。図-3には,超高強度コンクリートはり 供試体における目視観察可能であった変位 7mm までの ひび割れ状況を示す。

(1) 終局までの破壊進展状況

超高強度コンクリートはり供試体全3体において,曲 げひび割れ発生後,載荷に伴いせん断スパンで相次いで ウェブせん断ひび割れが発生した。荷重の増加とともに, 曲げひび割れは支間中央から支点方向に分散して発生 し,ウェブせん断ひび割れは上下方向にさらに進展した。 その後も荷重は上昇を続け,たわみが 6mm 付近からた わみの増加に伴う荷重の増加が小さくなった。荷重増加 量は, せん断補強鉄筋量が少ないほど顕著に低下した。 たわみの増加とともに, せん断スパン中央付近において 圧縮破壊によるコンクリートの剥離が見られ,支間中央 付近では曲げせん断ひび割れも生じた。最終的に,圧縮 破壊に伴うウェブコンクリートの剥落が観察され,荷重増 加が小さくなり終局に至った。最大荷重(以下ピーク)を示 した後、斜めひび割れが開口し、荷重が急激に低下した。 実験ではピーク後も載荷を続け、荷重が十分に低下した

表 - 2 供試体概要

項目	記号	値
引張鉄筋断面積 [mm ²]	A_s	774.2
引張鉄筋比 [%]	p_w	8.80
ウェブ幅 [mm]	b_w	40
有効高さ [mm]	d	220
せん断スパン [mm]	а	660
せん断スパン有効高さ比	a/d	3.0
スターラップピッチ [mm]	S	45 ~ 90
せん断補強鉄筋比 [%]	r_w	1.0 ~ 4.0

表-3 コンクリートの配合

	粗骨材						単位量	$[kg/m^3]$			混和剤量	[%]
コンク	最大	水結合材比	空気量	細骨材率	水	セメ	シリカ	石灰石	細骨材	粗骨材	高性能	増粘剤
リート	寸法					ント	フューム	微粉末			減水剤	
	[mm]	[%]	[%]	[%]	W	С	CSF	L	S	G	SP^{-1}	V^{-2}
普通強度	15	60	4.5	45.3	175	292	-	249	718	857	1.5	0.20
高強度	15	25	4.5	48.3	165	660	-	-	753	790	1.5	0.10
超高強度	15	20	4.0	44.6	150	675	75	-	672	861	3.0	-

¹:粉体量(セメント+シリカフューム+石灰石微粉末)に対する重量百分率 , ²:水に対する重量百分率

衣-4 動材の刀子特性										
項目	種類	f_y [MPa]	供試体名	f'c [MPa]	f_t [MPa]	E _c [GPa]	P_{fcr}^{1} [kN]	P_{dcr}^{2} [kN]	P _{max} [kN]	
己怎姓的	SBPD108	1198	N1 ²⁾	33.4	2.50	25.8	25	30	117.2	
	D22		N2 ²⁾	35.8	2.85	29.4	22	26	123.3	
圧縮鉄筋	SD295A D16	295 ~	N3 ²⁾	35.0	2.55	28.4	20	23	123.3	
スターラップ	UB785	954	H2 ²⁾	73.8	4.27	31.6	31	31	229.1	
	UD10		H3 ²⁾	61.5	3.57	28.8	29	28	215.6	
端部 スターラップ	SD295A D6	295 ~	UH2	102.4	6.57	40.8	17	54	274.1	
	SD295A		UH3	98.2	6.49	38.2	32	60	289.8	
組立鉄筋	D6	295 ~	UH4	99.1	6.91	40.8	31	51	335.3	

¹P_{fr}:曲げひび割れ発生荷重,²P_{dr}:斜めひび割れ発生荷重,³P_{ma}:荷重の最大値

たわみが 10mm (UH4 では 11mm) に達した時点で終了した。せん断補強鉄筋量の増加とともに,ピーク値(P_{max})が上昇する傾向が見られ,せん断補強鉄筋量が最も大きいUH4 では,ピーク時のたわみも他の2体(UH2,UH3)に比較し増加した。

図 - 3 に示すように,すべての供試体において,支間中 央付近で曲げせん断ひび割れがわずかに発生したが,発生 した斜めひび割れはほとんどウェブせん断ひび割れであ った。せん断補強鉄筋量の違いによるひび割れ性状の違い はほとんど見られなかった。

(2) 鉄筋のひずみ

実験では,図-4 に示す通り,スパン中央における2 本の引張鉄筋のひずみならびにはり上端から d/2 の位置 におけるスターラップのひずみを計測している。図-5

荷重 [kN] 350 スターラップともに弾性的に機能し,曲げおよび斜め引 斜め圧縮による剥離の発生 300 張破壊に対して,十分抵抗していたことがわかる。 250 3.2 斜め圧縮破壊耐力の検討 (1) 既往の提案式による算定結果と実験値との比較 200 RC部材の斜め圧縮破壊耐力は,コンクリート標準示方 150 斜めひび割れの開口 書¹⁾およびPlacasらの研究³⁾によれば,式(1)(以下示方書式) 100 UH2 および式(2)(以下Placas式)により求まる。 曲げひび割れの発生 UH3 50 UH4 0 ■ 鉄筋ひずみゲージ 10 12 0 2 6 8 UH2 たわみ [mm] d/2図-2 荷重-たわみ関係 æ ╼ UH2 Δ UH3 d/2п UH3 F Л UH4 d/2UH4 Λ Δ 図 - 3 ひび割れ性状 (変位 7mm 時) 図 - 4 鉄筋ひずみ計測位置 鉄筋ひずみ [×10⁻⁶] 4000 3000 2000 曲げひび割れ 曲げひび割れ 曲げひび割れ の発生 の発生 の発生 1000 めひび割れ めひひ 斜めひび割れの発生 の発生 の発生 0 100 150 200 250 300 100 150 200 250 300 100 150 200 250 300 350 0 50 0 50 0 50 荷重 [kN] 荷重 [kN] 荷重 [kN] (a) UH2 (b) UH3 (c) UH4

図 - 5 荷重 - 鉄筋ひずみ関係

に,ピークまでの荷重と鉄筋のひずみの関係を示す。図 中の番号は,図-4 に示すスターラップのひずみゲージ の番号をそれぞれ示している。なお,図には,ピーク時 に斜め圧縮破壊した側のせん断スパンに配置されたス ターラップの結果を示している。

これらの図において,引張鉄筋ひずみの傾きが変化し, ひずみが急増しているのは,曲げひび割れが生じて鉄筋の 引張貢献分が大きくなったためである。一方,スターラッ プのひずみが急増しているのは,ウェブせん断ひび割れが スターラップ部を貫通したことにより,スターラップが斜 め引張破壊に対して抵抗し始めたことに起因する。

すべてのケースにおいて,終局に至るまで鉄筋ひずみ は漸増し,大きなひずみの低下は見られない。また,す べての鉄筋において降伏ひずみ(引張鉄筋:5990×10⁻⁶, スターラップ:4770×10⁻⁶)に達していない。引張鉄筋, スターラップともに弾性的に機能し,曲げおよび斜め引 張破壊に対して,十分抵抗していたことがわかる。 32 斜め圧縮破壊耐力の検討

$$V_{eq.1} = 1.25 f'_c {}^{1/2} b_w d \tag{1}$$

 $V_{eq.2} = 0.15(6.63 + 1.32r_w)f'_c^{1/2}b_w d$ (2)

ただし, V_{eq.1}: 示方書式による算定値(N), V_{eq.2}: Placas らの提案式による算定値(N),f'c:コンクリートの圧縮強 度 (MPa), b_w : ウエブ幅(mm), d: 有効高さ(mm), r_w : せん断補強鉄筋比(%)である.

表-6および図-6に,算定結果と実験値を整理した ものを示す。示方書式による算定値は,普通強度コンク リートを使用した供試体では,実験値と算定値の比 (V_{exp}/V_{ea.1})が 0.92~0.95 となり,よく一致した。しか し,高強度・超高強度コンクリートを使用した供試体の Vexp/Vea.1は 1.21~1.53 となり, 斜め圧縮破壊耐力を過小 評価する結果となった。一方, Placas式では, 高強度・ 超高強度コンクリートを使用した供試体において,実験 値と算定値の比 (V_{exp}/V_{eq.2})が 0.95~1.06 となり,精度 良く実験値を再現できたが,普通強度コンクリートを使 用した供試体のVexp/Vea.2は 0.72~0.92 となり,耐力を過 大評価する結果となった。

以下では, f'_c および r_w が,斜め圧縮破壊時のせん断強 度vu(=Vu/bud)に及ぼす影響について考察する。

(2) コンクリートの圧縮強度f'cによる影響

f'cによる影響は,示方書式,Placas式ともにf'^{1/2}で表現

供試体名	V_{exp}^{1} [kN]	V _{eq.1} ² [kN]	V _{eq.2} ³ [kN]	V _{exp} /V _{eq.1}	V _{exp} /V _{eq.2}
N1 ²⁾	58.6	63.5	63.6	0.92	0.92
N2 ²⁾	61.6	65.8	76.6	0.94	0.80
N3 ²⁾	123.3	65.1	85.6	0.95	0.72
H2 ²⁾	114.6	94.5	110.0	1.21	1.04
H3 ²⁾	107.8	86.3	113.4	1.25	0.95
UH2	137.0	111.3	129.3	1.23	1.06
UH3	144.9	109.0	144.5	1.33	1.00
UH4	167.6	109.5	163.1	1.53	1.03
	(古 21/	· 二十章	+答:	317 DI	

表-6 実験値と算定値との比較

している。そこで,コンクリートの圧縮強度による影響 は, $v_u \epsilon f'_c^{1/2}$ で除すことにより検討した。図 - 7 に, f'_c と $v_{u}/f_{c}^{,1/2}$ の関係を示す。 $f_{c}^{,}$ の増加とともに, $v_{u}/f_{c}^{,1/2}$ の値が 増加しており,提案されている式よりもコンクリートの 圧縮強度の影響が大きいことがわかる。また,v_u/f^{,1/2}の 値の増加は、r_w=2%に比べr_w=3%の方が大きく、せん断補 強鉄筋比の増加とともにコンクリートの圧縮強度の影 響が大きくなったと考えられる。

(3) せん断補強鉄筋比rwによる影響

rwによる影響について、示方書式では考慮しておらず、 Placas式では(6.63+1.32r_w)で表現している。そこで,r_wに よる影響は、vuを(6.63+1.32rw)で除すことにより検討した。 図 - 8 に, r_wとv_u/(6.63+1.32r_w)の関係を示す。超高強度コ ンクリートを使用した供試体では,rwの変化にかかわら ず v_v/(6.63+1.32r_w)の値はほぼ一定値を示しており, (6.63+1.32rw)で概ね評価できると考えられる。しかし, 普通強度コンクリートを使用した供試体では,r_wの増加 とともにv_u/(6.63+1.32r_w)の値は減少しており, せん断補 強鉄筋による耐力の上昇は見られなかった。なお,高強 度コンクリートを使用した供試体において, v_u/(6.63+1.32r_w)の値が大幅に減少しているのは,f'_cが大 きくばらついたためと考える。

(4) まとめ

高強度コンクリートを使用した場合に,安全側に評価 するよう定められた示方書式では,高強度化に伴い耐力 を過小評価することが確認された。また,普通強度では, せん断補強鉄筋比の影響は見られず, Placas式では耐力 を過大評価する結果となった。既往の提案式による算定 値は,f'。の違いにより実験値との乖離が見られることか ら,新たな算定法の提案が必要であると考える。

3.3 斜め圧縮破壊のメカニズム

(1) 斜め圧縮破壊のメカニズム⁴⁾

示方書式, Placas 式は, 実験値を参考にして定式化さ れた経験式である。本研究では,図-9に示すように, せん断補強鉄筋と平行な仮想切断面を有するフリーボ

ほぼ

0

-定値を示している

低下が見られる

3

せん断補強鉄筋比 rw [%]

2

1

普通強度

- 高強度

+ 超高強度

5

Veq2:Placas式算定值 ${}^{1}V_{exp}$:実験他, ${}^{*}V_{eq1}$:不万書式昇疋他,

図-7 コンクリートの圧縮強度の影響 図-8 せん断補強鉄筋比の影響

ディーを考えることにより,斜め圧縮破壊耐力を算定す ることを考える。ここで,せん断補強鉄筋は降伏せず, RC はりは,コンクリートの斜め圧縮破壊によって終局 に至ると仮定している.このとき,切断面に作用する内 力は,コンクリートの曲げ圧縮力 C',引張鉄筋の引張力 T,ウェブコンクリートの斜め圧縮力 D'となる。図中の jd は応力中心間距離であり,この間のコンクリートが斜 め圧縮に抵抗する.鉛直方向の力のつりあいより,斜め 圧縮破壊耐力を求めると,式(3)のようになる.

 $V_{eq.3} = D'\sin\theta = b_{w.}jdf''_c\sin\theta\cos\theta$ (3) ここで, $V_{eq.3}$:斜め圧縮破壊耐力(N), θ :トラス機構で の圧縮斜材角度(cot θ =1~2), b_w :ウエブ厚(mm), jd:応力 中心間距離(mm)(=(7/8)d), f''_c :斜めひび割れ間でのコン クリートの圧縮強度(MPa)(=0.7 f'_c)とそれぞれ仮定する. すると,式(3)は,式(4)のように簡略化できる.

$$V_{eq.3} = (0.24 \sim 0.30) b_w df'_c \tag{4}$$

これより,斜め圧縮破壊耐力を先ほど同様,せん断強度 $v_u(=V_u/b_wd)$ で整理する。式(4)より, v_u は f'_c に比例するとして,この影響について検討した。

(2) 算定式の適用性

図 - 10 に, f'_cに対するv_uをf'_cで除した値(v_u/f'_c)との関 係を示す。v_u/f'_cの値は,0.15~0.20 に分布しており,式 (4)の係数である 0.24~0.30 より小さい値を示した。これ は斜めひび割れ間でのコンクリートの圧縮強度をf'_cの 70%であると仮定した点,斜め圧縮力がひび割れ間で均 ーに分布していない点などに起因していると考えられ る。また,せん断補強鉄筋比が大きい程,v_u/f'_cの値は大 きくなる結果となったが,0.20より大きくなることはな かった。このことからv_u/f'_c=0.20 は,せん断補強鉄筋比 増加による斜め圧縮耐力上昇の限界となっているので はないかと考えられる。

また,コンクリート圧縮強度の増加による耐力の頭打 ち傾向が見られた。これは,コンクリートの高強度化に 伴い,斜め圧縮破壊(以下圧壊)領域が集中したことが影 響したと考えられる。 (3) 圧縮破壊領域に対するf'cおよびrwの影響

図 - 11 に,N3,UH3,UH4 の荷重 - たわみ曲線を示 す。また,図 - 12 に,これらの供試体のピーク時のひび 割れ図を示す。なお,圧縮によると考えられるひび割れ を濃く示している。さらに,各たわみに対するスターラ ップのひずみを各々の下部に示す。図中の点線は,ひず みを計測したスターラップの位置を示す。

図 - 12より 超高強度コンクリートを使用した UH3, UH4 では,普通強度コンクリートを使用した N3 に比べ, 斜め圧壊域が局所的に発生していることが観察できる。 また,せん断補強鉄筋比が大きい UH4 では,UH3 に比 べると,圧壊域が増加する結果となった。

ウェブにおいてコンクリートが圧縮破壊し始めると, コンクリートはせん断力を十分伝達できなくなり,その せん断力はスターラップにより受け持たれると考えら れる。よって,圧壊の進展とともに,圧壊部周辺のスタ ーラップのひずみは増加する。

図 - 12 より,N3 では,プレピークにおいてすべての スターラップでひずみが漸増している。つまり,スパン 内に広く圧壊が生じ,ウェブコンクリートのせん断伝達 力の低下分が,スターラップにより受け持たれたことを示 している。実際に,たわみ4mm前後より圧壊がせん断ス パンに広く分布していることを目視により確認している。

一方,コンクリート強度が高いUH3では,圧壊が生じ るたわみ 6mm 前後から圧壊部周辺のスターラップのひ ずみが急増している。つまり,局所的にウェブコンクリ ートの圧壊が生じたことにより,そのせん断力は十分伝 達されず周辺スターラップにより受け持たれたことを 示している。これについても,目視によりたわみ 6mm 前後から圧壊がせん断スパンの一部分においてのみ発 生していることを確認している。せん断補強鉄筋比 2% の供試体についても同様の現象が確認された。

また, UH4 は UH3 に比べ広範囲に圧壊が生じ, すべ てのスターラップひずみが圧壊の進行とともに順調に 増加していることがわかる。これは, せん断補強鉄筋量 が多いことから, スターラップによりせん断伝達力が維

持され,より広範囲に圧壊が広がったことに起因してい ると考えられる。

図 - 12 圧壊箇所およびスターラップひずみ変化

(4) まとめ

図 - 12(a)に示すように,圧壊領域がせん断スパンに広 く分布しているN3 では,図 - 10に示すように, v_u/f'_c の 値は 0.20 を示したのに対し,圧壊領域が局所化している UH3,UH4 では,0.20 よりも小さい値を示した。また, より局所化が顕著であるUH3 では,UH4に比べて v_u/f'_c の 値は小さくなった。その他の供試体についても,同様の 傾向が見られた。つまり,使用するコンクリートの高強 度化に伴い,斜め圧縮破壊領域は局所化し, v_u/f'_c の値は 0.20 から低下することが確認された。しかし,十分にせ ん断補強を行うことにより,この圧壊領域は広がり, v_u/f'_c の値は 0.20 に近づくことが明らかになった。これよ り,圧壊領域の局所化が終局耐力に影響したと考える。

図 - 10 より,せん断補強鉄筋比が変化しても圧壊が局 所化していない場合は耐力に変化が見られないこと,圧 壊領域の拡大によりv_u/f'_cの値は 0.20 に近づいたことか ら,圧壊が局所化しない場合には,v_u/f'_c=0.20 で表現さ れると考える。

4. まとめ

本研究から以下の知見が得られた。

- 超高強度コンクリートを用いた場合,十分なせん断 補強鉄筋を配置することにより,耐力の向上が見ら れることを確認した。
- 既存の斜め圧縮破壊算定式は,f'cの違いにより実験 値を適切に評価できないことから,新たな算定式の 必要性が示唆された。
- 使用するコンクリートの高強度化により,斜め圧縮破 壊領域は局所的に発生し,v_u/f'_cの値は 0.20 から低下 することが確認された。
- 4) 鉄筋でせん断補強することにより,圧壊領域は増加し, v_u/f²_cの値は 0.20 に近づくことが明らかになった。

謝辞

本研究を実施するに当たり,高性能減水剤を提供して 頂きました BASF ポゾリス(株)に厚く御礼申し上げます。

参考文献

- 1) 土木学会:コンクリート標準示方書 [構造性能照査 編],土木学会,pp.67-72,2002
- 小林央治,三木朋広,二羽淳一郎:鉄筋コンクリート はりのウエブ圧縮破壊に関する実験的研究,土木学会 第62回年次学術講演会,V5-329,pp.657-658,2007.9
- A.Placas, P. E. Regan: Shear Failure of Reinforced Concrete Beams, ACI Jornal, Vol.68, No.10, pp.763-774, 1971
- 二羽淳一郎:コンクリート構造の基礎,数理工学社, pp.82-83,2006