論文 速度依存型制震部材による単層 RC 造建物の地震応答制御

藤井 賢志*1

要旨:本論文では1質点3自由度系にモデル化した RC 造偏心建物を対象として,速度依存型制震部材を用いて柔側構面の最大応答変位を目標値以内に収めるための必要制震部材量の算定手法を,等価線形化手法に基づき定式化する。次いで,水平1方向入力および水平2方向入力に対する応答性状を時刻歴応答解析により検討する。検討の結果,本論文で提案する手法によって,偏心建物の最大応答変位を目標値以内に収めるための制震部材の必要量を合理的に算定可能であることを示した。

キーワード: 偏心建物, 速度依存型制震部材, 粘弾性ダンパー, 等価線形化手法, 応答制御設計

1. はじめに

近年,鉄筋コンクリート造建物(以下,RC 造建物と 表記)を対象として,鋼製ダンパーの変位依存型制震部 材や粘性・粘弾性ダンパー等の速度依存型制震部材によ る応答制御技術の開発およびこれらを用いた新築建物 の設計・既存建物の耐震改修が精力的に行われている¹⁾。 これら制震部材を用いた RC 造建物の応答制御技術の普 及のためには,RC 骨組の非線形特性および設置する制 震部材の特性を適切に反映させた,合理的な応答設計手 法の開発が重要な課題である。しかしながら,偏心を有 する建物を対象とした合理的な応答制御設計手法は,未 だ確立していないのが現状である。

一方,著者らは,文献2)において等価1自由度系モデ ルを用いた多層偏心骨組の非線形応答推定手法の提案 を行った。文献2)の手法は,限界耐力計算法³⁾と同様に 時刻歴応答解析を行わずに推定できる手法である。従っ て,これを応用して偏心建物の速度依存型制震部材によ る合理的な制震部材の必要量概算法を提示することは, 非常に有用であると思われる。

本論文では1質点3自由度系にモデル化した RC 造偏 心建物を対象として,速度依存型制震部材を用いて柔側 構面の最大応答変位を目標値に収めるための必要制震 部材量の算定手法を,等価線形化手法に基づき定式化す る。次いで,水平1方向入力および2方向入力における 応答性状を時刻歴応答解析により確認して,本算定手法 の有効性を検証する。

2. 等価線形化法による制震部材の必要量算定法 2.1 等価1自由度系モデルの運動方程式

はじめに,文献4)と同様にして,速度依存型制震部材 を設置した単層偏心系モデルの非線形運動方程式より 等価1自由度系モデルの運動方程式を導出する。

本論文では,図-1 に示す単層偏心建物の複数構面に 同一の特性を有する線形速度依存型制震部材(以下,制

震部材と表記) が設置されている場合を対象として議論 を行う。ここで、本研究では制震部材を図-2 に示す線 形粘弾性体(減衰係数: $C_D(\omega)$,貯蔵剛性: $K_D(\omega)$)と弾 性支持部材(剛性: K_B)が直列に連結されたものとして モデル化する。著者の一連の研究において、非線形領域 での RC 骨組の等価剛性は、図-3(a)に示すように最大 変形(正負両領域における絶対値の大きい側の変形)に 対する割線剛性で定義している^{2),4)}。そこで、制震部材 の場合においても、図-3(b)に示すようにその等価剛性 $K_{VD}(\omega)$ を最大変形に対する割線剛性で定義する。図-2 に示す制震部材が円振動数ωでの定常振動をするとき、 等価剛性 $K_{VD}(\omega)$ および等価減衰係数 $C_{VD}(\omega)$ は式(1)で得 られる。

*1 千葉工業大学 工学部建築都市環境学科助教 博(工) (正会員)

$$\begin{cases} K_{VD}(\omega) = \frac{K_B \left[K_D(\omega) \left\{ K_B + K_D(\omega) \right\} + \left\{ C_D(\omega) \omega \right\}^2 \right]}{\left\{ K_B + K_D(\omega) \right\}^2 + \left\{ C_D(\omega) \omega \right\}^2} \\ C_{VD}(\omega) = \frac{K_B^2 C_D(\omega)}{\left\{ K_B + K_D(\omega) \right\}^2 + \left\{ C_D(\omega) \omega \right\}^2} \end{cases}$$

(1)

次いで,非線形領域における制震部材付き単層偏心系 モデルの1次モードベクトルを定める。文献5)において 笠井らは、

粘弾性体と弾性支持部材と直列結合した制震 部材と線形弾性骨組が並列結合した線形多自由度系シ ステムにおいて、制震部材の等価剛性 Κνρ(ω)をシステム の固有円振動数ω;より定まると仮定して、収束計算によ り固有値解析を行って各次モードベクトルを近似的に 得る方法を示している。本研究では、この方法を非線形 領域に拡張し、制震部材付き単層偏心系モデルの1次モ ードベクトル φ_1 ,等価固有円振動数 ω_{1eq} を式(2)で定める。

$$\omega_{leq}^{2} \mathbf{M} \boldsymbol{\varphi}_{1} = \left(\mathbf{K}_{EQF} + \mathbf{K}_{VD} \left(\omega_{leq} \right) \right) \boldsymbol{\varphi}_{1}$$
(2)

$$\mathbf{M} = \begin{bmatrix} m & 0 & 0 \\ 0 & m & 0 \\ 0 & 0 & I \end{bmatrix}$$
(3)

$$\mathbf{K}_{\mathbf{VD}}\left(\boldsymbol{\omega}_{\mathrm{leq}}\right) = \mathbf{L}_{\mathbf{VD}}K_{VD}\left(\boldsymbol{\omega}_{\mathrm{leq}}\right) \tag{4}$$

$$\mathbf{L}_{\mathbf{VD}} = \sum n_{Xi} \begin{bmatrix} 1 & 0 & l_{Yi} \\ 0 & 0 & 0 \\ l_{Yi} & 0 & l_{Yi}^2 \end{bmatrix} + \sum n_{Yi} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & -l_{Xi} \\ 0 & -l_{Xi} & l_{Xi}^2 \end{bmatrix}$$
(5)

$$\boldsymbol{\phi}_{1} = \left\{ \phi_{X1} \quad \phi_{Y1} \quad \phi_{\Theta1} \right\}^{\mathrm{T}}$$
(6)

ここで, M: 質量マトリクス, m, I: 単層偏心系モデ ルの慣性質量および回転慣性質量, KEOF: RC 骨組の等 価剛性マトリクス, $K_{VD}(\omega_{leq})$:制震部材の等価剛性マト リクス, n_{Xi}, n_{Yi}は各構面に配置する制震部材の個数, l_{Xi} およびしょは各構面の位置である。一方,文献4)と同様に, 単層偏心系モデルにおける1次モード応答の主軸方向を, 式(7)で定義される 1 次等価質量 M_{1U}*が最大となる方向 と定義すると、1次モード応答の主軸方向とX軸の成す 角ψ1(図-4)は式(10)により定まる。

$$M_{1U}^{*} = \beta_{1U} \boldsymbol{\varphi}_{1}^{T} \mathbf{M} \boldsymbol{\alpha}_{U}$$
(7)

$$\beta_{1U} = \varphi_1^{T} \mathbf{M} \alpha_{U} / \varphi_1^{T} \mathbf{M} \varphi_1$$
(8)

$$\boldsymbol{\alpha}_{\mathrm{U}} = \left\{ \cos \psi_{1} \quad -\sin \psi_{1} \quad 0 \right\}^{\mathrm{T}} \tag{9}$$

$$\tan\psi_1 = -\phi_{Y_1}/\phi_{X_1} \tag{10}$$

本論文では、図-4 に示すように弾性時における1次 モード応答の主軸方向をU方向,これに直交する方向を V方向と表記する。地震動をU方向からの1方向入力と する場合,制震部材を設置した単層偏心系モデルの非線 形運動方程式は式(11)の形で表される。

$$\mathbf{M}\ddot{\mathbf{d}} + \mathbf{C}_{\mathbf{F}}\dot{\mathbf{d}} + \mathbf{f}_{\mathbf{RF}} + \mathbf{f}_{\mathbf{VD}} = -\mathbf{M}\boldsymbol{\alpha}_{\mathbf{U}}\boldsymbol{a}_{gU}$$
(11)

$$\mathbf{d} = \begin{cases} x \\ y \\ \theta \end{cases}, \mathbf{f}_{\mathbf{RF}} = \begin{cases} R_{Xf} \\ R_{Yf} \\ M_{Zf} \end{cases}, \mathbf{f}_{\mathbf{VD}} = \begin{cases} R_{Xvd} \\ R_{Yvd} \\ M_{Zvd} \end{cases}$$
(12)

ここで, d: 重心位置での変位ベクトル, C_F: RC 骨組 の減衰マトリクス, $\mathbf{f}_{\mathbf{RF}}$, $\mathbf{f}_{\mathbf{VD}}$: RC 骨組の復元力ベクトル および制震部材の抵抗力ベクトル, agU:入力地動加速度 の U 方向成分である。ここで、対象とする単層偏心系モ デルがU方向からの1方向地震入力に対しては1次モー ド応答が卓越して振動するものと仮定し、変位ベクトル dを式(2)により得られる1次モードベクトルφ,を用いて 式(13)で表されると仮定する。

$$\mathbf{d} \approx \beta_{1U} \boldsymbol{\varphi}_1 D_{1U}^{*} \tag{13}$$

式(13)を式(11)に代入して両辺に左側より $\beta_{\mu\nu} \varphi_1^T$ を乗 じて整理すると、1次モードに関する等価1自由度形モ デルの運動方程式が式(14)の形で得られる。

$$\ddot{D}_{1U} + \frac{C_{1Uf}^{*}}{M_{1U}^{*}}\dot{D}_{1U} + A_{1Uf}^{*} + A_{1Uvd}^{*} = -a_{gU}$$
(14)

$$C_{1Uf}^{*} = \beta_{1U}^{2} \left(\boldsymbol{\varphi}_{1}^{T} \mathbf{C}_{F} \boldsymbol{\varphi}_{1} \right)$$
(15)

$$A_{IUf}^{*} = \frac{\beta_{IU} \phi_{1}^{T} \mathbf{f}_{Rf}}{M_{IU}^{*}}, A_{IUvd}^{*} = \frac{\beta_{IU} \phi_{1}^{T} \mathbf{f}_{vd}}{M_{IU}^{*}}$$
(16)

ここで、 C_{1Uf}^{*} : RC 骨組の1次等価減衰係数、 D_{1U}^{*} : 1 次モード応答における等価変位, A_{1Uf}^{*}, A_{1Uvd}^{*}:1 次モー ド応答における RC 骨組と制震部材の等価加速度である。

2.2 等価線形化法に基づく制震部材の必要量の定式化

本節では、等価線形化法に基づき制震部材の必要量の 定式化を行う。等価1自由度系モデルの最大等価変位を D11/0^{*}, 同時刻での1次モード応答における RC 骨組と制 震部材の等価加速度をそれぞれ $A_{1U0f}^{*}, A_{1U0vd}^{*}$ とおく。

ここで,対象とする単層偏心系モデルがU方向からの 水平1方向地震入力を受けて1次モードで応答する場合, 最も変形が大きくなる構面での最大応答変位が許容変 形に達すると仮定し、その入力地震動の擬似加速度応答 スペクトルおよび変位応答スペクトルをそれぞれ $_{p}S_{A}(T_{1ea}, h_{1ea}), S_{D}(T_{1ea}, h_{1ea})$ とおくと,式(17),(18)が得ら れる。

$$A_{1U0f}^{*} + A_{1U0vd}^{*} = {}_{p}S_{A}(T_{1eq}, h_{1eq})$$
(17)

$$D_{1U0}^{*} = S_D \left(T_{1eq}, h_{1eq} \right)$$
(18)

ここで、 T_{1eq} :制震部材を設置した単層偏心系モデル の等価周期, h_{1eq} :1次モードの等価減衰定数 h_{1eq} である。 一方、入力地震動の減衰定数 5%での擬似加速度応答ス ペクトルを $_{p}S_{A0}(T)$ とし、 $_{p}S_{A0}(T_{1eq})$ と $_{p}S_{A}(T_{1eq}, h_{1eq})$ との関係 が式(19)で表されると仮定する³⁾。

$$\frac{{}_{p}S_{A}(T_{1eq},h_{1eq})}{{}_{p}S_{A0}(T_{1eq})} = \frac{{}_{p}S_{A}(T_{1eq},h_{1eq})}{{}_{p}S_{A}(T_{1eq},0.05)} = \frac{1.5}{1+10h_{1eq}}$$
(19)

加えて、 $_{p}S_{A0}(T)$ が固有周期に反比例すると仮定し、RC 骨組のみでの等価周期を T_{1eqf} とすると、 $_{p}S_{A0}(T_{1eqf})$ と $_{p}S_{A0}(T_{1eq})$ の関係は式(20)で表される。

$$\frac{{}_{p}S_{A0}(T_{1eq})}{{}_{p}S_{A0}(T_{1eqf})} = \frac{T_{1eqf}}{T_{1eq}} = \sqrt{\frac{A_{1U0f}^{*} + A_{1U0rd}^{*}}{A_{1U0f}^{*}}}$$
(20)

式(19)と式(20)より $_{p}S_{A}(T_{1eq}, h_{1eq})$ が式(21)で表される。

$${}_{p}S_{A}(T_{leq},h_{leq}) = \frac{1.5_{p}S_{A0}(T_{leqf})}{1+10h_{leq}}\sqrt{\frac{A_{1U0f}^{*} + A_{1U0d}^{*}}{A_{1U0f}^{*}}} \quad (21)$$

加えて, RC 骨組の等価減衰定数を *h_{eqf}*, 制震部材の等 価減衰定数を *h_{eqvd}* とすると, 1 次モードの等価減衰定数 *h*_{1eq} は式(22)で表される。

$$h_{leq} = \frac{A_{lU0f}^{*} \cdot h_{eqf} + A_{lU0vd}^{*} \cdot h_{eqvd}}{A_{lU0f}^{*} + A_{lU0vd}^{*}}$$
(22)

式(22)を式(21)に代入して,さらにそれを式(17)に代入 すると,式(23)が得られる。

$$A_{1U0f}^{*} + A_{1U0vd}^{*} = \frac{1.5_{p} S_{A0} (T_{1eqf})}{1 + 10 \frac{A_{1U0f} \cdot h_{eqf} + A_{1U0vd} \cdot h_{eqvd}}{A_{1U0f} \cdot H_{1U0vd} \cdot H_{1U0vd}}} (23)$$
$$\cdot \sqrt{\frac{A_{1U0f}^{*} + A_{1U0vd}^{*}}{A_{1U0f} \cdot H_{1U0vd} \cdot H_{1U0vd$$

式(23)は A_{1U0vd}^* に関する 2 次方程式となる。これを A_{1U0vd}^* について解くと式(24)を得る。

$$A_{1U0vd}^{*} = \frac{-B + \sqrt{B^2 - 4AC}}{2A} A_{1U0f}^{*}$$
(24)

$$A = \left(1 + 10h_{eqvd}\right)^2 \tag{25}$$

$$B = 2\left(1+10h_{eqf}\right)\left(1+10h_{eqvd}\right) - \left\{\frac{1.5_{p}S_{A0}\left(T_{1eqf}\right)}{A_{1U0f}^{*}}\right\}^{2} \quad (26)$$

$$C = \left(1 + 10h_{eqf}\right)^2 - \left\{\frac{1.5_p S_{A0}(T_{leqf})}{A_{1U0f}}\right\}^2$$
(27)

一方,1次モード応答における制震部材の等価抵抗力

F_{vd1U}*を式(28)で定義する。

$$F_{vd1U}^{*} = M_{1U}^{*}A_{1Uvd}^{*} = \beta_{1U} \mathbf{\phi}_{1}^{T} \mathbf{f}_{VD}$$
(28)

1 次モード応答において最大等価変位の発生時刻にお ける等価抵抗力 F_{vd100} ^{*}は、制震部材の等価剛性マトリク ス $\mathbf{K_{VD}}(\omega_{leq})$ を用いて式(29)で表すことができる。

$$F_{vd1U0}^{*} = \beta_{1U}^{2} \left(\boldsymbol{\varphi}_{1}^{T} \mathbf{K}_{\mathbf{VD}} \left(\boldsymbol{\omega}_{1eq} \right) \boldsymbol{\varphi}_{1} \right) D_{1U0}^{*}$$
(29)

式(29)に式(28)を代入し、さらに式(4)を用いて整理することにより式(30)が得られる。

$$K_{VD}\left(\omega_{1eq}\right) = \frac{\boldsymbol{\varphi}_{1}^{\mathrm{T}} \mathbf{M} \boldsymbol{\varphi}_{1}}{\boldsymbol{\varphi}_{1}^{\mathrm{T}} \mathbf{L}_{\mathbf{VD}} \boldsymbol{\varphi}_{1}} \frac{A_{1U0vd}}{D_{1U0}^{*}}$$
(30)

従って,式(24)により得られた A_{1U0vd} *を式(30)に代入することにより,制震部材1つあたりの必要等価剛性 $K_{VD}(\omega_{1eq})$ が得られる。

2.3 制震部材の必要量の算定手順

単層偏心系モデルにおける制震部材の必要量の算定 手順を以下に記す。

 非制震の単層偏心系モデルに対して1次モード形 の変動を考慮した静的漸増載荷解析^{2), 6), 7)}を実施し, 変形が最も大きくなる構面の変形が許容変位に達 するステップでの等価加速度_oA_{1Uf}^{*},等価変位_oD_{1U}^{*}, 同ステップでの1次モードベクトル_oβ_{wo}φ₁,等価 固有円振動数_oω_{1eq}ならびに等価周期_oT_{1eq},等価減 衰定数_oh_{eqf}を求める。ここで, oh_{eqf}は各構面の等 価粘性減衰定数 h_{eqf}から式(31)により求める。

$${}_{o}h_{eqf} = \sum_{i} \left(h_{eqfi} W_{efi} \right) / \sum_{i} W_{efi}$$
(31)

$$h_{eqfi} = \begin{cases} h_0 \sqrt{\frac{K_{EQFi}}{K_{EFi}}} & \mu_{fi} < 1\\ 0.2 \left(1 - \frac{1}{\sqrt{\mu_{fi}}} \right) + h_0 \sqrt{\frac{K_{EQFi}}{K_{EFi}}} & \mu_{fi} \ge 1 \end{cases}$$
(32)

$$W_{efi} = K_{EQFi} \cdot d_i^2 / 2 \tag{33}$$

ここで、 h_0 : RC 骨組の弾性時の減衰定数、 W_{efi} : 各 構面 RC 骨組のポテンシャルエネルギー、 K_{EQFi} : 各 構面 RC 骨組の等価剛性、 K_{EFi} : 各構面 RC 骨組の 弾性剛性、 μ_{fi} : 各構面 RC 骨組の塑性率 (= d_{maxi}/d_{yi})、 d_{max} : 各構面の最大変形、 d_{yi} : 各構面の降伏変形、 d_i : 各構面の現ステップでの変形である。

- 設置する制震部材を選択し、設置する構面と数量を 仮定して式(5)より L_{VD}マトリクスを作成する。
- 制震部材を設置した単層偏心系モデルの1次モー ドの等価固有円振動数ω_{leq}をω_{leq}=_oω_{leq}と仮定して、 制震部材の等価減衰定数 h_{eqvd}を式より算定する。

$$h_{eqvd} = 0.92h_{eqvd_0}, h_{eqvd_0} = \eta_{VD}\left(\omega_{1eq}\right)/2$$
(34)

ここで、 $\eta_{VD}(\omega_{1eq})$:制震部材の損失係数であり、粘 弾性体の損失係数を η_D 、弾性支持部材の剛性 K_B と 粘弾性体の貯蔵剛性 $K_D(\omega_{1eq})$ との比を κ とおくと式 (35)により得られる。

$$\eta_{VD}\left(\omega_{leq}\right) = \frac{\eta_D\left(\omega_{leq}\right) \cdot \kappa\left(\omega_{leq}\right)}{1 + \kappa\left(\omega_{leq}\right) + \eta_D\left(\omega_{leq}\right)^2}$$
(35)

$$\eta_{D} = \frac{C_{D}(\omega_{1eq}) \cdot \omega_{1eq}}{K_{D}(\omega_{1eq})}, \kappa(\omega_{1eq}) = \frac{K_{B}}{K_{D}(\omega_{1eq})}$$
(36)

- 4. 式(24)を用いて、RC 骨組の等価加速度 $A_{1U0}^{*} = _{o}A_{1Uf}^{*}$, 擬似加速度応答スペクトル $_{p}S_{A0}(T_{1eqf}) = _{p}S_{A0}(_{o}T_{1eq})$, RC 骨組の等価減衰定数を $h_{eqf} = _{o}h_{eqf}$ と仮定して A_{1U0vd}^{*} を算定する。次いで、1 次モードベクトル $\beta_{IU} \varphi_{1} = _{o}\beta_{IU} _{0}\varphi_{1}$,最大等価変位 $D_{1U0}^{*} = _{o}D_{1U}^{*}$ と仮 定して式(30)より制震部材 1 つあたりの必要等価 剛性 $K_{VD}(\omega_{1eq})$ を算定する。
- 5. 使用する制震部材のサイズを決定する。
- 制震部材を設置したモデルに対して,文献 7)の方法 により再度静的漸増載荷解析を実施し,変形が最も 大きくなる構面の変形が許容変位に達するステッ プでの等価変位 D_{1U}*,同ステップでの等価周期 T_{1eq}, 等価減衰定数 h_{1eq}を求める。次いで,式(37)を満足 することを確認する。

$$D_{1U}^{*} \ge S_{D}(T_{1eg}, h_{1eg})$$
 (37)

式(37)を満足しない場合,2に戻って制震部材の必要量の算定をやり直す。

7. 時刻歴応答解析により最終的な確認を行う。

なお,式(32)は,文献 8)の式を文献 9)と同様にして, 減衰を瞬間剛性比例型と仮定した場合に適合するよう に修正したものである。一方,式(34)では定常振動にお ける減衰定数 h_{eqvd0} を 0.92 倍に低減しているが,これは 笠井らによる検討結果 ¹⁰に基づくものである。

3. 解析諸元

3.1 解析建物モデル

解析建物モデルは、図-5 に示す4層建物を想定した 矩形平面を有する1質点3自由度系の単層偏心系モデ ルとし、非制震建物モデルを Model-O,制震建物モデル を Model-Vd-1, Model-Vd-2 とする。各解析建物モデル の慣性質量 m は 1524ton,回転慣性質量 I は 1.075x10⁵ton-m²,等価高さ H_1^* は11.6mである。各構面の 復元力特性は、図-6に示す武藤モデル¹¹⁾において除荷 剛性を修正したモデルとした。表-1 に各モデルの RC 骨組の諸元(弾性剛性 K_{EF} ,ひび割れ点の耐力 Q_c ,降伏 耐力 Q_v ,降伏点割線剛性低下率 α_v ,降伏後剛性低下率 α_2) を示す。なお,表-1中のRC 骨組の諸元は文献 2)に従い,元となる4層偏心骨組の各構面で独立に平面骨組の静的漸増載荷解析を実施し定めた。非制震建物モデルの降伏ベースシア係数は,X方向で 0.624,Y方向で 0.567である。RC 骨組部分の減衰は瞬間剛性比例型とし,RC 骨組のみの弾性1次モードに対して 3%と仮定した。

3.2 入力地震動

入力地震動として水平2方向成分の模擬地震動を6組 作成した。模擬地震動の主軸成分は、極めて稀に生じる 地震動(第1種地盤)の設計用応答スペクトル³⁾に適合 するように作成し、一方の副軸成分では主軸成分で用い た応答スペクトルを0.7倍したものに適合するように作 成した。模擬地震動の位相特性は観測記録6記録(El Centro 1940, Taft 1952, Hachinohe 1968, Tohoku Univ. 1978, JMA Kobe 1995, Fukiai 1995)の主軸成分・副軸成分を用

構面	K _{EF} (MN/m)	Q_c (kN)	Q_y (kN)	α_y	α_2
Y1	946.9	1554	4661	0.218	0.005
Y2,Y3	129.5	530	1591	0.292	0.022
Y4	114.1	491	1472	0.280	0.023
X1	858.7	1175	3524	0.305	0.004
X2~X5	80.5	334	1001	0.287	0.024
X6	70.7	314	942	0.261	0.024

いた。図-7 に模擬地震動の加速度応答スペクトル(減 衰定数 5%)を示す。

3.3 制震部材の必要量算定

ここでは、2.3節で述べた手順により、非制震建物モ デル (Model-O) に対して,弾性1次モード応答の主軸 方向から図-7に示す模擬地震動の主軸成分が入力した 場合に、構面 X6 の最大変形角が 1%以内に納まるため に必要な制震部材の量の算定を行う。制震部材はジエン 系粘弾性体による制震部材¹²⁾を用いると仮定し,図-8に示す6要素モデルを用いる事とした。制震部材の必 要量算定にあたり, Model-Vd-1 では構面 X6 のみに, Model-Vd-2 では構面 X6 と構面 Y4 に制震部材を設置す ると仮定した。加えて、弾性支持部材の剛性 K_Bと粘弾 性体の貯蔵剛性 $K_D(\omega_{1eq})$ との比 κ を 9.16 と仮定した。こ れは、定常振動において、粘弾性体と制震部材の変位振 幅の比を 0.9 とするためである。なお、粘弾性体の損失 係数η_D(ω_{1eq})は文献 12)に基づき,温度を 20℃と仮定する と 0.6 程度となった。得られた各モデルの制震部材の諸 元を表-2 に示す。表-3 に各モデルの弾性時の固有周 期 T_i(s),モード応答の主軸方向とX軸のなす角 ψ(Deg.), および弾性1次モード応答の主軸方向における等価質量 比 m_{iU}^{*}(= M_{iU}^{*}/m)を示す。表-3 より, y₁の差異が,非 制

震 建 物 モ デ ル (Model-O) と 制

震 建 物 モ デ ル

(Model-Vd-1, Model-Vd-2) では 0.7 度以下と極めて小 さい事,および m_{1U} ^{*}が 0.772~0.779 と大きくなっている ことがわかる。すなわち,制震部材の設置による弾性 1 次モード応答の主軸方向の変動は、本解析で用いたモデ ルでは無視できるほど小さい事,および全てのモデルで 弾性 1 次モード応答の主軸方向からの 1 方向入力に対し て 1 次モード応答が概ね支配的であることがわかる。

4. 時刻歴応答解析結果

4.1 1方向地震入力に対する応答

はじめに, 各モデルの弾性1次モード応答の主軸方向

からの1方向地震入力に対する応答性状を検討する。入力地震動は、図-7に示す模擬地震動の主軸成分6波とし、X軸から時計回りに59.9度の方向より入力した。

図-9 に各構面の最大応答変形角(模擬地震動 6 波に よる平均値)を示す。図-9 より,非制震建物モデルの Model-O では構面 X6 の最大変形角の6 波平均値が 1.40%となっているのに対して,制震建物モデルの Model-Vd-1と Model-Vd-2 では,構面 X6 の最大変形角の 6 波平均値がそれぞれ 0.910%, 0.923%となり,目標値 である1%を満足していることが確認できる。

4.2 2方向地震入力に対する応答

次いで,各モデルの水平2方向地震入力に対する応答 性状を検討する。ここでは,模擬地震動の主軸成分を前 述の1方向地震入力での解析と同一方向に入力し,副軸 成分をその直交方向に同時入力した。図-10に各構面の 最大応答変形角(模擬地震動6波による平均値)を示す。 図-10より,水平2方向地震入力の場合においても,制 震建物モデルの Model-Vd-1と Model-Vd-2では,構面 X6 の最大変形角の6波平均値がそれぞれ 0.947%, 0.946% となり,目標値である 1%を満足していることが確認で

	$K_{VD}(\omega_{1eq})$	$C_D(\omega_{1eq})$	$K_D(\omega_{1eq})$	K _B	C_{D1}	K_{D1}	C_{D2}	K _{D2}	<i>C</i> _{D3}	K _{D3}
	(MN/m)	(MNs/m)	(MN/m)	(MN/m)	(MNs/m)	(MN/m)	(MNs/m)	(MN/m)	(MN/m)	(MN/m)
Model-Vd-1	17.24	1.376	18.55	169.8	2.898	10.87	26.81	9.418	0.797	149.2
Model-Vd-2	12.82	1.024	13.80	126.3	2.156	8.084	19.94	7.006	0.592	111.0
表-3 各モデルの弾性固有周期 T_{i} ,各モード応答の主軸方向の角度 $arphi_{i}$,等価質量比 m_{iU}^{*}										

表-2 各モデルの制震部材の諸元

表 -3 谷モナルの弾性固有周期 T_{i} ,谷モート応合の主軸方向の角度 ψ_i ,寺価貨重比 m_{iU}									
	1次モード			2 次モード			3次モード		
	$T_1(s)$	$\psi_1(\text{Deg.})$	m_{1U}^{*}	<i>T</i> ₂ (s)	$\psi_2(\text{Deg.})$	m_{2U}^{*}	<i>T</i> ₃ (s)	ψ ₃ (Deg.)	m_{3U}^{*}
Model-O	0.342	59.9	0.772	0.215	-30.8	0.000	0.125	56.9	0.228
Model-Vd-1	0.328	58.6	0.778	0.215	-31.8	0.001	0.125	56.4	0.221
Model-Vd-2	0.328	59.9	0.779	0.214	-30.7	0.000	0.125	56.9	0.221

きる。加えて、図-9と図-10の比較より、1方向地震 入力と2方向地震入力で構面 X6の最大応答変形にほと んど差が見られないことがわかる。これは、副軸成分の 入力方向は1次モード応答の主軸に対する直交方向で ある事から、副軸成分の1次モード応答への寄与が非常 に小さくなったためであると考えられる。

5 まとめ

本論文では1質点3自由度系にモデル化した RC 造偏 心建物を対象として,速度依存型制震部材を用いて柔側 構面の最大応答変位を目標値に収めるための必要制震 部材量の算定手法を定式化し,時刻歴応答解析により検 証した。その結果,本論文での手法により,制震部材の 必要量を合理的に算定可能であることを示した。本手法 の多層偏心骨組への展開等は,今後の課題である。

謝辞

本論文は,平成 18・19 年度文部科学省科学研究費補 助金(若手研究(B)「多次元入力地震動を受ける偏心建 物の損傷制御に関する基礎的研究」,課題番号:18760426, 研究代表者:藤井 賢志)として実施された成果の一部 をまとめたものである。ここに謝意を示す。

参考文献

- 例えばコンクリート工学協会:コンクリート構造物の応答制御技術研究委員会報告書・論文集,コンクリート工学協会,2002.6
- 2)藤井 賢志,中埜 良昭:全体崩壊型フレームにより構成された多層偏心骨組の最大応答変位推定手法に関する研究,日本建築学会構造系論文集,第607号, pp.149-156,2006.9
- 国土交通省住宅局建築指導課:2001 年度限界耐力計 算法の計算例とその解説,2001.3
- 4) 藤井 賢志,中埜 良昭,真田 靖士:水平2方向 地震入力を受ける単層偏心建物における等価1自 由度系モデル,コンクリート工学論文集, Vol. 16, No. 2, pp.37-47, 2005.5
- 5) 笠井 和彦,大熊 潔:粘弾性ダンパー制振構造の 近似解析法(その1,2),日本建築学会大会学術 講演梗概集(中国), B-2, pp.1001-1004, 1999.9
- 藤井 賢志,中埜 良昭,真田 靖士:単層1軸偏 心建物の非線形応答評価における直交方向構面の 剛性低下の影響,構造工学論文集,日本建築学会, Vol. 49B, pp. 221-234, 2003.3
- 7) 藤井 賢志:粘弾性ダンパーの寄与分を考慮した単

図-10 2方向地震入力における各構面の最大応答

層偏心建物の1次モード適応型静的漸増載荷解析, 日本地震工学会・大会-2007 梗概集, pp.268-269, 2007.11

- Gulkan, P., Sozen, M.A.: Inelastic Response of Reinforced Concrete Structures to Earthquake Motions, ACI Journal, Vol. 71 No. 12, pp.604-610, 1974. 12
- 吉川 和秀,岡野 創,小鹿 紀英:高次モードを 考慮した等価線形化法による単層偏心建物の地震 応答評価,日本建築学会構造系論文集,第 621 号, pp.57-65, 2007.11
- 10) 笠井 和彦,大熊 潔:振動数に依存する制振構造の等価周期・等価減衰の評価法とその精度 弾性架構と粘弾性ダンパーやオイルダンパーをもつ一質点構造における全体減衰系への置換法-,日本建築学会構造系論文集,第580号,pp.51-58,2004.6
- Muto K., Hisada, T., and Bessho S.: Earthquake Resistant Design of a 20 Story Reinforced Concrete Buildings, Proceedings of the 5th World Conference on Earthquake Engineering, pp. 1960-1969, 1973
- 12) 日本免震構造協会:パッシブ制振構造設計・施工マニュアル,第2版,2005.9