論文 ポリマーセメントモルタルを用いて補強した RC 造基礎梁の補強効果 に関する実験的研究

安藤 祐太郎*1・田中 卓*2・中野 克彦*3

要旨:現在,戸建住宅直接基礎における開口部補強工法,RC 造基礎梁の曲げおよびせん断補強工法が注目されている。阪神淡路大震災や新潟県中越沖地震等の大地震が発生する度に,基礎の強度の弱い部分からひび割れや破断等の被害が生じている。そこで,補強工法として,ひび割れの補修やコンクリートの中性化の防止等に使用されており,高い接着力・強度・耐火性等の高性能が期待できる,ポリマーセメントモルタルを用いて補強を行った RC 造基礎梁の曲げ・せん断実験を実施し,耐力・靭性能・ひび割れ性状を把握した。 さらに,へりあきの小さな部分に設置されたアンカーボルトの補強に関しても検討した。 キーワード:RC 造基礎梁,ポリマーセメント,曲げ補強,せん断補強,アンカーボルト

1. はじめに

小規模建築物とくに木造戸建住宅における基礎は, 平成12年の建築基準法改正により,基本的には一体の RC 造としてせん断補強筋を配筋することが義務付け られているが,それ以前の既存不適格建物では基礎の 耐力不足が懸念される。また,住宅の増改築を行う際 にも基礎の補強が必要となる場合が考えられる。

そこで、耐震補強として、ひび割れの補修工法や、 高い接着力、強度、耐火性および耐久性が期待できる ポリマーセメントモルタル(以下, PCM)を用いた補 強方法の適用性を検討する。本研究では、基礎立上が り部分における主筋の曲げ補強およびあばら筋のせん 断補強を想定した RC 梁を製作し、曲げ・せん断実験 を行うことにより、それらの補強効果に関する基礎デ ータを得ることを目的としている。

さらに, RC 造基礎梁のアンカーボルトによるせん 断力伝達機構に関する問題点,および,へりあきの小 さな部分に設置されたアンカーボルトの補強に関して も検討するものとする。

2. 実験概要

2.1 アンカーボルトによるせん断力伝達機構に

関する実験(シリーズ A)

(1) 試験体

表-1に試験体要因および計算値,図-1にアンカー ボルトの種類および埋込み長さ,図-2に試験体形状 図の一例および加力模式図を示す。

断面形状は b×D=150×300 mm, せん断スパン比は a/D= 1.5(せん断スパン a= 450 mm) とし, 上下主筋は 2-D16 (SD345, pt= 1.02%), せん断補強筋は 2-D5@150mm

No.	主要	要因	計算値										
	種類	埋込長	アンカーボルトの引張耐力(kN										
		(mm)	T_{I}^{*1}	T_2^{*2}	T_{3}^{*3}	T_3 " **4	$T4^{35}$						
A-1	-	—	_	_	_	-							
A-2	異形	150	107	63.9	89.5	50.3	—						
A-3	D22	260	107	111	155	63.5	_						
A-4	丸鋼	260	132	122	22.8	—	—						
A-5	フ [°] レート M22	150	132	74.9	13.2		207						
A-6		205 132		90	18		237						
A-7		260	132	122	22.8	_	264						

表-1 シリーズ A-試験体要因および計算値

cQ{su}(kN)¹⁾: 大野・荒川 min 式によるせん断強度 (46.5kN, アンカー引張力 93kN)

cQmu (kN)¹⁾: RC 規準略算式による曲げ終局時のせん断力 (71.4kN, アンカー引張力 143kN)

- ※1 $T_{I}(kN)^{2}$: アンカー筋の降伏により決まるアンカーの 引張耐力 ($T_{I}=\sigma_{y}\cdot A_{e}, \sigma_{y}$:アンカー筋降伏強度(N/mm²), A_{e} : アンカー筋ねじ部の断面積(mm²))
- ※2 $T_2(kN)^{2)$: コーン状破壊により決まるアンカーの引張 耐力 ($T_2=0.31\sqrt{\sigma_B}A_c$, σ_B : コンクリート圧縮強度 (N/mm²), A_c : 有効水平投影面積(mm²))

(T₃(kN)³): 付着破壊により決まるアンカーの引張耐力 (T₃= $\tau_a \cdot \pi \cdot d_a \cdot l_e$, $\tau_a = 10\sqrt{\sigma_B/21}$ (N/mm², 異形鉄筋の場合), $\tau_a = 1.4$ (N/mm², 丸鋼の場合), d_a : アンカー筋径(mm), l_e : 定着長さ(mm)) ※4 T₃"(kN)^{4,5}: ヘリあきを考慮した付着耐力式 (T₃"=

- $\alpha \cdot \tau_a \cdot \pi \cdot d_a \cdot l_e, \ \alpha = 0.5 \frac{c}{l_e} + 0.5, c:$ へりあき寸法(mm)) ※5 T_4 (kN)²: 支圧破壊により決まるアンカーの引張耐力
- $(T_{e}=f_{n}\cdot A_{o}, f_{n}=\sqrt{A_{c}/A_{o}}\sigma_{B}\leq 10\cdot\sigma_{B},$
- fn: コンクリート支圧強度(N/mm²), Ao: プレート支圧面積(mm²))

*2 新潟工科大学大学院工学研究科(現:戸田建設㈱) (正会員)

*3 新潟工科大学 教授・博士(工学) (正会員)

^{*1} 新潟工科大学大学院工学研究科 (正会員)

図-1 アンカーボルトの種類と埋込み長さ

図-2 試験体形状図および加力模式図

(SD295A, p_w=0.22%)とした。なお、実験時のコンク リートの圧縮強度は $\sigma_B=29.4$ N/mm² であった。

変動要因は,① アンカーボルトの種類(異形鉄筋 D22, プレート定着 M22), ②アンカーボルトの埋込み長さ 3 水準 (150mm, 205mm, 260mm) とした。

(2) 加力方法

加力は, 図-2 に示す大野式逆対称モーメント形式と

し、一方向載荷とした。なお、アンカーボルトを定着さ せた試験体は、アンカーボルトを引張り、もう一方を圧 縮することにより、大野式逆対称モーメント形式と同様 な加力形式となるような方式とした。測定は梁の相対変 形およびアンカーボルトの抜出し量を変位計により、主 筋、せん断補強筋およびアンカーボルトの歪を歪ゲージ により行った。

2.2 ポリマーセメントによる補強効果に関する 実験(シリーズ B)

表-2 に試験体要因,計算値および実験値,図-3 に

-	梁部分						補強部分					计符体※4						実験	
No.	コンクリー		主筋	せん断補強筋				ポリマー	É	主筋 せん		f補強筋	11 早 16						
	$\sigma_{\rm B}$	配筋	${}_{s}\sigma_{y}^{*1}$	配筋	"σ _y ^{%2}	Pw ^{%3}	アンカー筋	$\sigma_{\rm B}$	配筋	$_{s}\sigma_{y}^{\ \ \ \ \ }^{1}$	配筋	$_{w}\sigma_{y}^{\gg2}$	$_{\rm c}{\rm Q}_{\rm su}$	_c Q _{mu}	_c Q _{su} "	_c Q _{mu} "	T ₂ /2	T ₂ "/2	Q
	(N/mm^2)		(N/mm^2)		(N/mm^2)	(%)		(N/mm^2)		(N/mm^2)		(N/mm^2)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
B-1	1 2 3 4 5 29.4 6	1-D13	392	- 1-D10		0(0.20)		70.6	1-D13	392			14	21	44	42	-	-	48.1
B-2					-	0(0.29)	4999-1	62.4			1-D10	381	14	14 21 4	44	54	-	1	59.0
B-3						0.39(0.59)	59) mc 65.9 29) 70.0 59) M20 53.2 29) プレート型 -	65.9	1-D16 354	354			34	21	52	54	-	-	63.6
B-4 B-5						0.39(0.29)		70.0			1	-	34	21	44	54	-	-	48.6
					410	0.39(0.59)		53.2		1-D10	381	34	21	52	54	28.6	48.7	42.8	
B-6					410	0.39(0.29)		53.7			1	-	34	21	44	54	28.6	48.7	36.1
B-7		1-D22	2 371			0.39		-	-	-	1	-	49	65	-	-	28.2	-	32.0
B-8	-8					0.39	無し	-	-	-	-	-	49	65	-	-	-	-	65.7

表-2 シリーズ B-試験体要因,計算値および実験値

※1 $s \sigma_v$:主筋降伏点強度 ※2 $w \sigma_v$:せん断補強筋降伏点強度

pw:せん断補強筋比の値は梁部分の値を示し、()内は梁と補強部分を含めた値を示す。 ₩3

cQ{mu}":補強部分を含めた梁の曲げ終局強度 ※4 _cQ_{mu}:梁の曲げ終局強度

cQ{su}":補強部分を含めた梁のせん断終局強度 _cQ_{su}:梁のせん断終局強度

 T_2 :コーン状破壊により決まるアンカーの引張耐力 $(T_2 = 0.31 \sqrt{\sigma_{\scriptscriptstyle B}} A_c, \sigma_{\scriptscriptstyle B}$:コンクリートの圧縮強度 $(N/m^2),$ A_c :有効水平投影面積(mm²))

 T_2 ":補強部分を含めた梁のコーン状破壊によるアンカーの引張耐力(T_2, T_2 "ともに、 A_c を減算することでへりあ きを考慮)

試験体断面図を示す。補強部分を含めた断面は、b×D= 160×250mm とし、既存部分の幅を 120mm,補強部分の 幅を 40mm とした。試験体はせん断スパン比 a/D=1.8(せ ん断スパン a=450mm) とし、コンクリートの設計基準 強度を $F_{C}=21$ N/mm², PCM の設計基準強度を $F_{M}=60$ N/mm²とした。なお、実験時のコンクリートの圧 縮強度は $\sigma_{B}=29.4$ N/mm², PCM の圧縮強度は $\sigma_{M}=53\sim$ 71N/mm²(接着強度 2N/mm²程度)であった。

変動要因は、① 既存梁部分のせん断補強の有無、② 補強部分の主筋量2水準(1-D13, 1-D16)、③ 補強部分 のせん断補強筋の有無(せん断補強筋は全強度溶接した 組立鉄筋), ④アンカーボルトの有無とした。

既存梁の主筋は上下に 1-D13, せん断補強筋は 180° フック(1-D10, @150)のシングル配筋, 補強部分の主 筋は 1-D13 または 1-D16, せん断補強筋は全強度溶接型

(1-D10, @150) のシングル配筋とした。

なお,補強部分の PCM は流し込む方式とし,既存部 分の接合面は電気式サンダーによるハツリ面とした。ま た,接着のためのアンカー等の定着筋は使用しておらず, PCM の接着力のみで一体化を図っている。

加力および測定は、シリーズ A と同様とした。

3.実験結果

3.1 シリーズ A の実験結果

図-4 に最終破壊性状および**図-5** にせん断力 (Q) と相対変形(δ)の関係を示す。

比較検討用のアンカーボルトの無い試験体の破壊モ ードはせん断補強筋が降伏することによるせん断破壊 を示した。

アンカーボルトに異形鉄筋を用いた試験体は、埋込み 長さが150mm (A-2)、260mm (A-3)ともにアンカーボ ルトの付着割裂破壊を示した。埋込み長さが長くなるこ とにより最大耐力は増加する。しかし、アンカーボルト より梁に伝達されるせん断力は、アンカーボルト上部の 有効付着領域からであり、梁下部には伝達されていない ことがわかる。

アンカーボルトにプレート定着を用いた試験体は, A-5 (埋込み長さ150mm)ではコンクリートのコーン状 破壊を示し, A-6 (埋込み長さ205mm)では梁のせん断 ひび割れが発生するものの,せん断ひび割れが進展する ことによるコーン状破壊を示した。A-7 (埋込み長さ 260mm)では A-1 と同様なひび割れ性状を示したが, ア ンカーボルトが降伏したために載荷を終了した。

図-6にプレート定着を用いた試験体のひずみ分布の 比較を示す。3体ともQ=40kN時の主筋(図中のA,B) およびせん断補強筋(図中のS)のひずみ分布である。 埋込み長さが150mmの試験体では、アンカーボルトの

引張側と他方の加力側において, 主筋とせん断補強筋の ひずみが異なっているのに対して,他の埋込み長さの長 い試験体では、両側でほぼ同じ性状を示している。

以上のことより,アンカーボルトから RC 基礎梁に伝 達されるせん断力は埋込み長さの違いにより異なると 考えられる。

3.2 シリーズ B の実験結果

(1) 破壊性状

図-7に最終破壊状況を示す。

B-1~3の試験体では、既存部および補強部分の主筋が 降伏した後,梁部分と補強部分が剥離した。

B-4 の試験体では、曲げひび割れ、主筋に沿ったひび 割れ等が発生した後,主筋降伏前に既存梁と補強部分と の付着が切れ,梁部分の主筋が降伏し,かぶり厚さの薄 くなった補強部分が付着破壊をおこした。

B-5 の試験体では、曲げひび割れ、せん断ひび割れが 入った後,主筋に沿ったひび割れが入り,主筋の付着割 裂破壊が生じ、最後は、既存梁と補強部分が剥離した。

B-6 の試験体では、既存梁と補強部分の間にせん断補 強筋が入っていないため、アンカー筋のプレートによる コーン破壊を防げずに,既存梁と補強部分が剥離した。

B-7 の試験体では、曲げひび割れ発生後アンカー筋周 囲にひび割れが発生した,その後,ひび割れは進展し, 最終的にはコーン状破壊に至った。

B-8 の試験体では、左右のせん断ひび割れ発生後、主 筋に沿った付着破壊が生じた。上面には、付着ひび割れ が発生した。

(2) 変形性状

図-8 に各試験体のせん断力 - 相対変形関係および計 算値を示す。既存部にアンカーの無い試験体(B-1~B-4) では、曲げひび割れが発生して剛性がやや低下し、その 後は、45kN前後で既存部および補強部の主筋が降伏す

B-1 B-2 B-3 B-4 B-2(上面) B-5(上面) B-3(上面) B-6(上面)

> B-4(上面) B-7(上面) 図-7 最終破壊状況(シリーズB)

図-10 主筋のQ-ε関係 (B-3 試験体)

ることで徐々に剛性が低下していき、50kN前後で部材 降伏に至った。どの試験体も既存梁および補強部分の主 筋を考慮した計算値とほぼ同じ値か高い値を示し,補強 部分の主筋による曲げ補強効果,およびせん断補強筋に よるせん断効果が確認できた。しかし,降伏後の大変形 時においては既存梁と補強部分の界面において剥離が 生じた。

図-9 に既存部および補強部の主筋のひずみ分布の一 例を示す。曲げひび割れ発生以降に主筋のひずみが増加 し,R=1/100rad.程度で既存部および補強部主筋のひずみ が降伏ひずみ程度まで達した。また,最大耐力時には主 筋ひずみが降伏ひずみを超えていた。また,図-10 に危

図-11 実験値と計算値の比較

険断面引張側の既存部および補強部主筋の荷重(Q) - ひずみ(ε)関係を示す。既存部と補強部の主筋ひずみ の履歴に若干の時間差が生じるものの、どちらも降伏ひ ずみ付近までひずんでおり、PCMの塗り付けのみで、一 体となって挙動して主筋降伏を生じさせることができ るといえる。

(3) 最大耐力と計算値の比較

図-11に最大耐力実験値(cQmax)とせん断終局強度 (cQsu)および曲げ終局強度(cQmu)の計算値との比較を示 す。どちらも全断面を一体打ちとして計算した値(PCM 考慮)と比較してみると、せん断終局強度で比較値は 1.09~1.34、曲げ終局強度で補強部に主筋のみを用いた試 験体(B-3)は0.90と多少低い値を示したが、その他の 試験体では1.09~1.18と概ね適合性は良く、既往の式を 用いての評価が可能であるといえる。

4. まとめ

本実験範囲内において以下の知見を得た。

- (1) PCM による補強は,主筋の曲げ補強およびあばら 筋のせん断補強に有効であることが確認できた。
- (2) アンカーボルトによる RC 造基礎梁へのせん断力 伝達機構は、アンカーボルト種類および埋込み長さ の違いにより異なる。
- (3) 補強部分の主筋およびせん断補強筋の評価は、全 断面を一体打ちとして計算した RC 梁の曲げおよび

せん断強度で評価が可能である。しかし,曲げ降伏 後の変形性能を確保するためには,接合面の一体性 を保つための補強が必要であると考えられる。

(4) へりあきの小さいアンカーボルトに対する補強 効果は、補強部分に主筋のみを用いた試験体より、 全強度溶接型の組立鉄筋を配置した試験体の方が 耐力の上昇が見られた。

参考文献

- 日本建築学会:鉄筋コンクリート構造計算規準・同 解説,1999.11
- 2) 日本建築学会:各種合成構造設計指針同解説,1985.2
- 3) 日本建築防災協会:既存鉄筋コンクリート造建物の 耐震改修設計指針,2001.1
- 4) 酒井 悟, 中野 克彦,他:接着系あと施工アンカ ーの引張特性に定着長さとへりあき寸法が与える 影響に関する実験的研究(その1 実験概要及び実 験結果),日本建築学会大会学術講演梗概集,C-2, pp.49-50,2005.9
- 5) 中村 卓史,松崎 育弘,他:定着長さとへりあき 寸法が接着系あと施工アンカーの引張特性へ与え る影響に関する実験的研究(その2 耐力評価に関 する検討),日本建築学会大会学術講演梗概集,C-2, pp.51-52,2005.9