論文 PCa 壁による鉄骨骨組の耐震性能の向上

佐藤 悠史*1・西村 泰志*2・吉田 幹人*3・尾崎 太亮*4

要旨:鉄骨骨組にプレキャストコンクリート壁板を組込む工法の合理化を意図して,鉄骨骨組とRC壁板との 接合部にせん断力のみ作用するように壁筋を施し,接合部に従来のシアーキーを用いた試験体によって,RC 壁板から鉄骨骨組への応力伝達機構を検討した。その結果を受けて,施工性を考慮して,2枚の孔あき鋼板ジ ベル(PBL)を重ねて用いる接合部ディテールを考案し,その接合部の性能実験を行った。実験結果から, 接合部のせん断耐力は,概ね孔数に比例して増大し,孔に鉄筋を挿入することによって最大耐力の向上およ び最大耐力後の変形性能の改善が認められることを示した。また,この接合部の耐力評価法を提案した。 キーワード:耐震壁,鉄骨骨組,合成構造,応力伝達,孔あき鋼板ジベル接合,耐力評価法

1. 序

鉄骨(以下,Sという)骨組に鉄筋コンクリート(以下,RCという)耐震壁やプレキャストコンクリート(以下,PCaという)耐震壁を組込むことによって,骨組の耐震性能が向上することが既往の研究¹⁾などで報告されている。しかしながら,従来の施工方法は,S骨組にシアーキーを数多く溶接し壁筋を配筋し,その後コンクリートを打設するなど非常に煩雑である。したがって,PCa壁に対して力学的に合理的な配筋を施すとともに,PCa化した壁板をS骨組に組み込む際の施工性を向上させるため,土木分野²⁾で用いられている孔あき鋼板ジベル

(Die Perfobond Leisten, 以下 PBL という) 接合を活用す ることを試みる。提案するディテールは、2枚の PBL の 円孔にモルタルを充填し、モルタルの一面せん断による 抵抗力を期待するもので、この場合の破壊性状および耐 力評価方法は明確にされているとは言いがたい。

本研究は,実験-1 として,S 骨組に内蔵された RC 壁 板を対象として,従来のシアーキーを用いて,S 骨組と RC 壁板との接合部の応力伝達機構を実験的に検討する。 なお,RC 壁板には接合部にせん断力のみ作用するよう に,壁筋が配筋されている^{3,4}。実験-2 では,S 骨組と RC 壁板を結合する方法として,PBL を活用することを 試み,その破壊性状を実験的に検討するとともに,接合 部の耐力評価法を提案する。

2. 応力伝達機構

図-1 は、S 骨組に内蔵された RC 壁板にせん断力 Qが作用し、コンクリート板に θ = 45°の傾きを持つ圧縮 力Cの一様な圧縮束が形成された状態を示している。周 辺骨組の剛性および耐力が比較的小さい場合でも、図-1 に示すように壁筋が配筋されておれば、コンクリートに

*1 大阪工業大学大学院 博士前期課程 工学研究科建築学専攻

*2 大阪工業大学 教授 工博 (正会員)

*3 大阪工業大学大学院 博士前期課程 工学研究科建築学専攻

*4 高砂熱学工業(元大阪工業大学生)

作用する圧縮力 C の一つの成分は,壁筋に作用する引張 力 T によって釣合い,他方の成分 F は,シアーキーを介 してS部材に軸方向力として伝達できると考えられる³⁾。

3. 実験-1 (S 骨組に内蔵された RC 壁板)

3.1 実験計画

図-1 に示された応力伝達機構の妥当性を検討するために,実験変数を載荷方法(単調載荷(W-2M)および 正負漸増繰返し載荷(W-4R))とする計2体の試験体が 計画された。図-2 に試験体の形状寸法,断面および接 合部詳細を示す。

S 骨組の寸法は階高, 梁スパンを 1000 mm とし, せん 断変形のみ生じるように柱梁接合部をピン接合とした。 RC 壁板の形状は, S 骨組と RC 壁板が接触することによ って, 接合部以外で応力伝達が行われることを避けるた めに, RC 壁板の隅角部が取り除かれた八角形とした。 壁筋は, 前述の応力伝達機構に基づいて, 接合部を結ぶ ように, 試験体中央部に 4.5¢ を 50 mm 間隔で縦横4本

	++-101		降伏応力度	引張強度	ヤング係数
試験体	材料		$\sigma_y ~({\rm N/mm^2})$	$\sigma_u (\text{N/mm}^2)$	E_s (N/mm ²)
wow	シアーキー	D13	384	539	$1.83\ \times 10^5$
W-2NI W-4R	シアーキー拘束筋	3φ	383	497	1.97×10^{5}
W III	壁筋	4.5 <i>ø</i>	477	515	$2.15\ \times 10^5$
⇒ b mA / L.			圧縮強度	割裂強度	ヤング係数
試験体	材料		$\sigma_B ~({ m N/mm^2})$	$\sigma_t ~({\rm N/mm^2})$	E_c (N/mm ²)
W-2M	工业力业		27.1	1.97	$4.84\ \times 10^4$
W-4R	1/2/2/2		28.4	1.97	4.00×10^{4}
TTT OL		117 4	D - + EA / L)E) #\#	

表-1 使用材料の力学的特性

W-2M試験体:单調載很 :裸邩

試験体		シアーキーに 沿ったひび割れ	せん断ひび割れ	最大荷重
W 2M	Q (kN)	6.25	18.8	42.8
W-2M (畄調載費)	δ (mm)	0.443	1.37	4.69
(平厕戦刑)	<i>R</i> (rad.)	0.000426	0.00132	0.00451
	Q (kN)	13.5	33.7	43.0
		$(10.8)^{(1)}$	(-15.5)	(-39.3)
W-4R	δ (mm)	0.802	2.42	8.56
(繰返し載荷)		(-0.525)	(-1.58)	(-5.07)
	<i>R</i> (rad.)	0.000800	0.00242	0.00854
		(0.000524)	(0.00102)	(0.0050()

表-2 実験結果

^{*1)}()内は負荷重の値

ずつ配筋した。なお, 壁筋量はコンクリート圧縮束の圧 縮強度に見合う量とした。S 骨組と壁との接合部は, D13 で長さ110mmのシアーキーを50mm間隔で3本配筋し た。なお、接合部でのせん断力の伝達をシアーキーのみ に依存させるため、RC 壁板とS 骨組との間に幅 10 mm のスリットが設けられている。

表-1に使用材料の力学的特性を示す。

実験は、下梁を固定し、図-2の矢印で示すように上 梁の端部に水平力を負荷した。

3.2 実験結果と考察

図-3に各試験体の最終破壊状況を示す。

各試験体とも層間変形角 R = 0.0008 (rad.) までにシア ーキーに沿ったひび割れが生じた。次いで、接合部付近 にせん断ひび割れが生じた。その後、各試験体とも変形 の増大に伴って、せん断ひび割れの進展が観察され、接

合部間を結ぶせん断ひび割れ状況が観察された。最大荷 重に達した後,RC壁板にひび割れの大きな進展はなく, 接合部近傍のせん断ひび割れの進展のみ観察された。そ の後,上下接合部におけるモルタルの剥落が観察された。 なお、繰返し載荷を行った W-4R 試験体では、シアーキ 一拘束筋の内部モルタルの剥落も観察された。表-2 に 各試験体のひび割れ発生荷重を示す。

図-4 に荷重変形関係を示す。縦軸は作用水平力 Q, 横軸は層間変形角 R である。

最大荷重に達するまでは、

載荷方法による変形性状の 大きな相違は見られない。各試験体とも,層間変形角R= 0.0045 ~ 0.0085 rad. で最大荷重に達した。載荷方法に よる最大荷重の相違は見られなかった。各試験体とも、 最大荷重に達した後、耐力低下が見られた。単調載荷を 行った W-2M 試験体では,耐力低下後,R=0.02 ~ 0.05 rad. 程度である一定の耐力を維持しているのに対し、 W-4R 試験体は, W-2M 試験体に比べて耐力低下が大きく, R = 0.02 rad. 以降も耐力低下が認められる。これは, W-4R 試験体が繰り返し載荷によって, 接合部近傍のモ ルタルやシアーキー拘束筋の内部モルタルの剥落が顕著 になったためと推察される。なお, W-4R 試験体におけ る負載荷側では、正載荷側に比べ最大荷重は若干小さい ものの、変形性状は同じである。

なお,シアーキーに貼付したひずみゲージの値から, シアーキーには軸力がほとんど作用していなかったこと 等から、接合部では、前述の応力伝達が行われているこ とが推察される。

3.3 終局耐力評価法

S 骨組に内蔵された壁の終局耐力 Q_u は, 接合部 (シ アーキー)のせん断耐力 Q_1 , 壁筋の降伏引張耐力 Q_2 お よび圧縮束の圧縮耐力 Q3 より

$$Q_u = \min\{Q_1, Q_2, Q_3\}$$
 (1)

によって評価する。ここに,

 $Q_1 = n \times a_1 \times \tau_y$

 $Q_2 = m \times a_2 \times_r \sigma_y \times \tan \theta$

 $Q_3 = s \times t \times \sigma_B \times \cos \theta \times \sin \theta$

 a1:シアーキー1本の断面積
 a2:壁筋1本の断面積

 ro: 壁筋の降伏応力度
 m:壁筋の本数

θ:圧縮束と梁材軸の

なす角度

n:シアーキーの本数

s:接合部の長さ

 σ_{R} : コンクリートの圧縮強度 t: 壁厚

 τ_v : シアーキー1本のせん断強度 ($\sigma_v / \sqrt{3}$)

なお、(1) 式では、シアーキー定着部の耐力は考慮し ていない。図ー4 の Q_u は、(1) 式の計算結果を示す。 計算値 Q_u は、壁筋の引張耐力 Q_2 によって決定されて いる。計算値は、やや小さめの評価となっている。

4. 実験-2(PBL を用いた接合部の性能実験)

4.1 PBL を用いた接合部ディテール

実験-1 より, RC 壁板とS 骨組の接合部にはせん断力 を伝達できる性能が備わっていればよいことが分かった。 したがって, せん断力を伝達できる接合部として, 施工 性を考慮して PBL を活用したディテールを考案する。元 来, 土木構造物などで PBL を用いる際は, PBL を単体で

用いることが多く,その適用範囲も幅広い。本研究では, 図-5に示すように、PBLを2枚重ねた状態で用いるこ とに特徴がある。このディテールは、PCa化されたRC 壁板とS部材の両部材にそれぞれ取り付けたPBLを重ね あわせ、モルタルで連結するもので、PCa壁板をS部材 に容易に建入れすることができる。また、高力ボルトな どに変わり、モルタルを充填することによって、施工誤 差を吸収できる利点もある。したがって、孔内に充填さ れたモルタルがボルトとしての役目を有しており、本論 では、モルタルボルトという。なお、ふさぎ板は、モル タル充填の際の型枠として、あるいはモルタルの拘束効 果を期待して設けられている。

4.2 実験計画

図-6 に接合部試験体詳細の一例を示す。本実験は, この接合部ディテールのせん断破壊性状を実験的に検討 するものである。

実験変数は、充填材の種類、PBLの孔径、孔数と孔の 配置位置、ふさぎ板の板厚および挿入鉄筋の有無である。 充填材は、呼び強度 *F_c* 40、*F_c* 80 および粉末樹脂を混入 した *F_c* 40 のモルタルを用いた。孔径は 16、20 および 25 mm の 3 種類である。孔の配置位置は、2 本を外側に配 置したもの、2 本を内側に配置したものである。ふさぎ

	3.5 mA /1.	モルタル強度	孔径	孔数	ふさぎ板板厚		<i>O</i>	δ_{H}	0 .than *3	2 (2
シリース	試験体	F_{c} (N/mm ²)	D_b (mm)	n _b	t_1 (mm)	挿入鉄筋	2 exp. (kN)	(mm)	(KN)	$Q_{\text{exp.}} \neq Q_{\text{theo.}}$
	SH40-25-4-6		25	4	6	無	16.5	0.152	13.7	1.20
	SH40-25-4-9				9		15.5	0.100	12.5	1.24
	SH40-25-4-12	40			12		17.2	0.140	13.7	1.25
SH40	SH40-25-2i-9			2(内側)			8.50	0.0962	6.27	1.35
	SH40-25-20-9			2(外側)	0		7.85	0.203	6.27	1.25
	SH40-20-4-9		20	4	9		10.3	0.0767	8.80	1.17
	SH40-16-4-9		16	4			9.15	0.118	5.63	1.63
	SH80-25-4-6				6		11.8	0.162	21.2	0.554
	SH80-25-4-9			4	9		18.6	0.137	21.2	0.877
	SH80-25-4-12		25		12		17.7	0.117	21.2	0.831
SH80	SH80-25-2i-9	80		2(内側)		無	6.86	0.197	10.6	0.647
	SH80-25-20-9			2(外側)	9		5.88	0.197	10.6	0.554
	SH80-20-4-9		20	4	,		10.0	0.153	13.6	0.734
	SH80-16-4-9		16				7.85	0.245	8.70	0.902
	SH40f-25-4-6		25	4	6		16.3	0.0846	11.8	1.38
	SH40f-25-4-9				9		9.48	0.0623	12.2	0.780
	SH40f-25-4-12	40			12		13.9	0.143	11.8	1.18
SH40f	SH40f-25-2i-9	(粉末樹脂混入)		2(内側)	9		7.68	0.104	6.08	1.26
	SH40f-25-20-9			2 (外側)			8.66	0.103	6.08	1.42
	SH40f-20-4-9		20	4			-	-	7.55	-
	SH40f-16-4-9		16				8.01	0.0790	4.83	1.66
	SH40RL-25-4-6			4	6	断面欠損	17.5	0.208	14.5	1.20
	SH40RN-25-4-12				12	無	19.4	0.156	16.7	1.17
	SH40R-25-4-9				9	有	(106)	(0.621)	(78.7)	(1.34)
SH40R	Shrion 25 Ty	40	25				144	11.3	104^{*4}	1.38
	SH40R-25-2i-9			2 (内側) 2 (外側)			(49.5)	(0.518)	(39.3)	(1.26)
							64.1	17.6	52.2	1.23
	SH40R-25-20-9						(45.4)	(0.554)	(39.3)	(1.15)
	511101(-25-20-)			- (> 1. ba)			77.8	11.1	52.2	1.49

表-3 試験体一覧および実験結果

*1 鉄筋挿入部に空洞を設けた試験体

*2 最大荷重。ただし、SH40Rシリーズについては、()内は降伏荷重を示す。SH40f-20-4-9試験体は、計測装置の不良により除外。

*3 (2) 式および(3) 式より求めた計算値を示す。

*4 SH40Rシリーズの最大荷重については、(3)式のO,を挿入鉄筋の引張強度の,から求めたせん断強度で,を用いて計算された。

図-7 載荷装置

	++*		降伏応力度	引張強度		ヤング係数
シリース	材	科	$\sigma_y (\text{N/mm}^2)$	$\sigma_u (\text{N/mm}^2)$		E_s (N/mm ²)
01140	× + **+=	$t = 6 ({\rm mm})$	298	42	21	1.98×10^{5}
5H40 SH80	ふささ秋 (SS400)	$t = 9 ({\rm mm})$	305	43	7	2.02×10^{5}
SH40f SH40R	(33400)	t = 12 (mm)	285	420		2.03×10^{5}
	孔あき鋼板 (SS400) t = 12 (mm)		297	431		$2.02\ \times 10^5$
SH40R	挿入鉄筋 (SR295)	9 <i>φ</i>	437	612		$2.20\ \times 10^5$
		dat	圧縮強度	ŧ	(The	鴚裂強度
シリーズ	材	料	圧縮強度 σ_B (N/mm	ŧ n²)	σ	射裂強度 1 (N/mm ²)
シリーズ SH40 ^{*1}	材	料	圧縮強度 σ_B (N/mn 46.2	₹ n ²)	σ	剧裂強度 _t (N/mm ²) 3.54
シリーズ SH40 ^{*1} SH40 ^{*2}	材	料	圧縮強度 σ_B (N/mn 46.2 42.0	走 n ²)	σ	割裂強度 (N/mm ²) 3.54 4.67
シリーズ SH40 ^{*1} SH40 ^{*2} SH80	材	料	圧縮強度 σ_B (N/mn 46.2 42.0 77.7	ž n ²)	σ	>割裂強度 (N/mm ²) 3.54 4.67 6.02
シリーズ SH40 ^{*1} SH40 ^{*2} SH80 SH40f ^{*3}	材 モル	料	圧縮強度 σ_B (N/mn 46.2 42.0 77.7 37.6	₹ n ²)	σ	割裂強度 (N/mm ²) 3.54 4.67 6.02 4.09
シリーズ SH40 ^{*1} SH40 ^{*2} SH80 SH40f ^{*3} SH40f ^{*4}	材	料	圧縮強度 σ_B (N/mm 46.2 42.0 77.7 37.6 34.2	₹ n ²)	σ	割裂強度 ¹ (N/mm ²) 3.54 4.67 6.02 4.09 4.23

表-4 使用材料の力学的特性

*1 SH40-25-4-9, SH40-25-2i-9, SH40-25-2o-9

*2 SH40-25-4-6, SH40-25-4-12, SH40-16-4-9, SH40-20-4-9 $^{\ast 3}$ SH40f-25-4-9 , SH40f-25-2i-9 , SH40f-25-2o-9

 $^{\ast 4}$ SH40f-25-4-6 , SH40f-25-4-12 , SH40f-16-4-9 , SH40f-20-4-9

板板厚は6,9および12mmの3種類である。これらの 変数の組合せによって、計26体の試験体が計画された。

SH80 シリーズは, SH40 シリーズよりも圧縮強度の高 いモルタルを用いた。SH40f シリーズは、粉末樹脂を混 入したモルタルを用い、充填材の引張強度を増大させる ことによって接合部のせん断強度の向上を目的とした。 SH40R シリーズは、挿入鉄筋の有無を変数とし、孔の中 央部に鉄筋9¢を配置した。

SH40, SH80 および SH40f シリーズはモルタルのみ, SH40R シリーズはモルタルと挿入鉄筋で接合部に作用 するせん断力を負担させようとするものである。表-3 に試験体一覧を示す。

実験は、図-7 に示すように、鋼板ジベル中央にせん 断力が作用するように,載荷梁を介し水平力を負荷した。 なお,鉛直油圧ジャッキは,試験体の浮き上がりを防止 するためのものである。

表-4に使用材料の力学的特性を示す。

4.3 実験結果と考察

図-8 に各シリーズの最終破壊状況を示す。各試験体と も、モルタルおよび鉄筋の直接せん断で破断している状 況が観察された。

図-9 に荷重変形関係の数例を示す。縦軸は作用せん 断力Q,第一象限の横軸は接合部の相対水平変位 δ_{H} ,第 二象限は接合部の相対鉛直変位*S_V*である。

SH40, SH80 および SH40f シリーズは最大荷重に達す

るまで δ_H は小さい。最大荷重に達した後、荷重が急激に 低下し脆性的な破壊が見られた。これは、モルタル破断 後、荷重を保持できる要因がなくなったためと考えられ る。また、荷重が低下した後、一定の荷重を保持して変 形が増大した。これは、充填材の細骨材の噛合い作用等 によると考えられる。なお、 δ_V は δ_H に比べ、非常に小 さい。

孔内に鉄筋が挿入された SH40R シリーズでは, SH40 シリーズと同程度のせん断力に達すると剛性がやや低下 したが,その後の剛性も高く,図-9(d)に示す①点の 荷重(以下,降伏荷重という)に達するまで,荷重が増 大した。これは,変形初期においては,モルタルと鉄筋 が同時にせん断力に抵抗しているが,荷重の増大に伴い モルタルの耐力負担分が減少したため,剛性が低下した ものと考えられる。降伏荷重に達した後,荷重はいった ん低下し,再び増大した。これは,降伏荷重に達した後, モルタルボルトが破断または鉄筋が降伏したため,荷重 が低下したと考えられる。その後,鉄筋のひずみ効果な どによって,荷重が増大し,最大荷重に至ったと考えら れる。最大荷重に達した後,鉄筋の破断音とともに荷重 が急激に低下した。

図-10 に実験変数による荷重変形関係の比較を示す。 PBL の孔数を変数とした試験体の最大荷重 Qexp は,孔 数に比例して増大している。PBL の孔径を変数とした試 験体の Qexp. は孔径が大きくなることによって増大する が、孔径の面積に比例した Q_{exp} の増大は確認されなか った。これは、Qexp. は孔径とモルタル内細骨材の寸法関 係にも影響があるためと考えられる。ふさぎ板の板厚を 変数とした試験体の Qexp. は、明瞭な差が確認されなか った。これは、期待した拘束効果が微小であったことを 示している。また,充填材の材料特性を変数とした試験 体の Qexp. には明瞭な差は確認できなかった。モルタル ボルト内に鉄筋を挿入した SH40R シリーズの PBL の孔 数を変数とした試験体の降伏荷重は,SH40 シリーズと 同様に孔数に比例して増大していることが確認された。 また、最大荷重についても、孔数に比例して増大する傾 向がみられた。

表-3に各試験体の実験結果を示す。

4.4 接合部のせん断耐力評価

モルタルボルトのせん断耐力 $Q_{\text{theo.}}$ は,

 $Q_{\text{theo.}} = n_b \times Q_{mc}$ (2) によって評価する。 Q_{mc} は、モール・クーロンの破壊基 準 ⁵⁾を用いて、モルタルボルトの純せん断強度を算出し たもので、

$$\begin{aligned} Q_{mc} &= \tau_{mc} \times \pi \times D_b^{-2}/4 \\ \tau_{mc} &= 0.5 \times \sqrt{\sigma_B \cdot \sigma_t} \end{aligned}$$

モルタルボルトに鉄筋を挿入した場合の降伏荷重 Q_y は,既往の研究²⁾を参考にして,(3)式による。

 $Q_{y} = n_{b} \times (Q_{r} + Q_{mc})$ $\simeq z_{k}^{2},$ $Q_{r} = \tau_{y} \times \pi \times D_{r}^{2}/4$ (3)

$$\tau_v = \sigma_v / \sqrt{3}$$

- Q_{mc} : モルタルボルトのせん断耐力
- τ_{mc}:モール・クーロンの破壊基準による純せん断強度
- D_b : モルタルボルトの直径
- σ_{B} :モルタルの圧縮強度
- σ_t :モルタルの割裂強度
- Qr: 鉄筋の降伏せん断耐力
- τy:挿入鉄筋の降伏せん断応力度
- D_r:挿入鉄筋の直径
- n_b :モルタルボルトの本数

図-11にせん断強度の実験値 $\tau_{exp.}$ とモール・クーロン の破壊基準との比較の一例を示す。図-12に各シリーズ の $\tau_{exp.}$ と計算値 τ_{mc} の比較を示す。縦軸は、計算値 τ_{mc} , 横軸は実験値 $\tau_{exp.}$ を示す。なお、せん断強度の実験値 $\tau_{exp.}$ は、最大荷重 $Q_{exp.}$ を各試験体の孔の総断面積で除した ものである。各試験体の実験値は計算値とほぼ一致して いる。図-9に示す $Q_{theo.}$ は式(2)または式(3)によ って求められた結果を示す。なお、孔内に鉄筋が挿入さ れた SH40R シリーズの最大荷重の計算値は、式(3)の Q_r の算定で、 τ_y のかわりに、挿入鉄筋の引張り強度か ら求めたせん断強度 τ_u を用いて算定された。SH40Rシリ ーズの計算値は各試験体の実験値に比べて小さい。

前述の実験結果および耐力評価法を踏まえて,PBLの 孔数や孔径などの調節によって,実務で求められる性能 を満足させることのできる接合部を構築することが可能 であると考えられる。

なお,耐力評価法については、今後詳細な検討が必要

であると考えられる。

5 結語

PCa 壁による S 骨組の耐震性能の向上を意図した研究 によって、

- S 骨組に内蔵された RC 壁を対象として, RC 壁板に 合理的な配筋を施し,従来のシアーキーを用いた試験 体によって, RC 壁板から S 骨組への応力伝達を明ら かにした。
- 2) RC 壁板と S 骨組との接合方法として,施工性を考 慮して,PBL を 2 枚重ねた状態で用いる接合部ディテ ールを考案した。
- 3) 考案された接合部の耐力評価法を提案した。
- 本研究結果から、考案された接合部ディテールを実務に用いることの可能性を示唆した。

参考文献

- 日本建築学会:各種合成構造設計指針・同解説, pp.149-189, 1985
- 2) 文献調査委員会:鋼とコンクリートを一体化する孔 あき鋼板ジベルの耐力評価に関する最近の研究,コン クリート工学, Vol.42, No.3, pp.61-67, 2004.3
- 3) 日本建築学会:鉄骨鉄筋コンクリート造配筋指針・ 同解説, pp.182, 2005.7
- 藤木・南:SRC 構造の合理的配筋設計法の開発研究 〔その10〕耐震壁の合理的配筋法(その1),日本建築 学会大会学術講演梗概集,pp.1565-1566,1989.10
- 5) W.F.Chen : PLASTICITY IN REINFORCED CONCR-ETE, 1982

謝辞

本研究の一部は、国土交通省「住宅等の耐震性の向上に資す る技術開発」プログラムによるもので、ミラクルスリーコーポ レーション(株)から多大な研究協力を得た。記して謝意を表す。