論文 多軸炭素繊維シートによるRC梁のせん断補強に関する実験的研究

堀本 歴^{*1}・星野 章仁^{*2}・宮里 心一^{*3}・上原子 晶久^{*4}

要旨:所定の方向に連続繊維を引き揃え,各層を積層して1枚の繊維シートとして編成することを特徴とする「多軸繊維シート」によるRC梁のせん断補強に関する実験を行った。単純梁にU字3面巻き補強し,3 点曲げ載荷試験によるせん断補強性能を評価した。繊維シートの編成条件の違い,すなわち繊維の方向性が 荷重-変位関係におけるポストピーク挙動の違いに現れることを明らかにした。また,終局時における繊維 シートの定着端部のはく離性状が編成条件によって異なることをつかみ,さらに繊維シートに生ずるひずみ を測定することで,多軸繊維シートの特徴を見いだした。 キーワード:多軸繊維シート,炭素繊維,せん断補強

1. はじめに

連続繊維シートによる既設鉄筋コンクリート構造物 の補修・補強工法は、施工が比較的容易であり、重機や 機械が使用できない作業環境下でも人手での作業が可 能であることや、また補強後の構造物重量や断面寸法変 化が小さく構造物や周辺への影響が小さいことなどか ら、適用実績が拡がっている¹⁾。

筆者らは、連続繊維の配列方向を任意に設定すること ができ、さらに異なる方向性を与えた連続繊維層を2層 以上積層して一枚の繊維シートとして編成することが できる「多軸繊維シート(図-1参照)」による、鉄筋コ ンクリート部材の補強性能に関する基礎的な実験を行 ってきた^{2),3)}。これは、連続繊維の配列方向を設計でき ることを活かし、斜め方向に編成することにより、合理

図-1 多軸繊維シート概念図

的に部材の補強効果を引きだすことを目的としている。 本研究では、炭素繊維により編成した多軸繊維シート を用い、繊維の方向性がせん断補強性能に及ぼす影響を 検討するとともに、評価手法を検討することを目的とし て、梁部材のせん断補強実験を行った。

2. 実験概要

2.1 供試体

コンクリートの示方配合を表-1 に示す。普通ポルト ランドセメント,最大寸法 25mmの粗骨材を用い,細骨 材率 44.4%, W/C を 50.5% とした。載荷試験時は材齢 6 ヶ月で,強度 36.0N/mm²であった。

図-2(a)に供試体の形状寸法と配筋を示す。高さ 300mm,幅150mmの単純梁とし、引張鉄筋はD25をか ぶり50mmで2本配筋した。なお、せん断破壊をコント ロールするため、片側にはスターラップを配筋した。主 筋比は2.84%である。

本供試体での、コンクリートの負担する計算せん断耐 カ(Vc)は式(1)より 61.8kN である。また、載荷は支点 間距離 1200mm の2等分3点単調載荷で行っており、無 補強供試体の計算上のせん断破壊荷重は 123.6kN となる。 また、図-2(b)に示すように同一箇所に方向の異なる

ようにひずみゲージを貼付け、ひずみの測定を行った。

粗骨材	スランプ	水セメ	細骨材率	単位量 (kg/m ³)				
最大寸法		ント比		7	ヤメント	细母材		混和剤
(mm)	(cm)	(%)	(%)	Л		和月初	相目的	(AE 減水剤)
25	8	50.5	44.4	155	307	801	1021	3.377

表-1 コンクリート示方配合

*1 倉敷紡績(株) 技術研究所 工修 (正会員)

*2 金沢工業大学大学院 工学研究科 環境土木工学専攻

*3 金沢工業大学 環境・建築学部環境土木工学科 准教授 工博 (正会員)

*4 弘前大学 大学院理工学研究科 助教 工博 (正会員)

(a) 形状寸法, 配筋

図-2 供試体概要図

表-2	多軸繊維シー	ト編成条件
-----	--------	-------

Name	編成条件(角度・目付)	模式図	
Sheet 0	0° (110 g/m ²) (Total 繊維量:110 g/m ²)		
Sheet +45/-45	+45° (110 g/m ²) ∕-45° (110 g/m ²) (Total 繊維量: 220 g/m ²)		
Sheet 0/+45/-45	0° (110 g/m ²) ✓+45° (110 g/m ²) ✓-45° (110 g/m ²) (Total 繊維量: 330 g/m ²)		

$$V_c = 0.2 \cdot (f_c \cdot P)^{1/3} \cdot (d/100)^{-1/4} \cdot [0.75 + 1.4/(a/d)] \cdot b \cdot d \quad (1)$$

- $f_{c'}$: コンクリート強度 (=36.0 N/mm²)
- P : 鉄筋比 (=2.84%)
- *d* :梁有効高さ (=237.5mm)
- a :載荷スパン (=600mm)
- b :梁幅 (=150mm)

これは、多軸繊維シートの編成繊維の方向とひずみの 関係を検討することを目的としている。

2.2 実験ケース

多軸繊維シートの編成条件を表-2 に示す。炭素繊維 を所定量,所定の方向に引き揃えた,1軸,2軸,3軸 の3水準の多軸繊維シートを準備した。繊維の編成角度 は,鉛直方向を0°,水平方向を90°として表記した。

繊維シートの貼付けは、載荷スパン内の3面巻き(U 字補強)とした。実構造物への適用を想定した場合、支 承などにより全面閉合巻き補強が困難であることが予 測されることから、本実験では3面巻き補強を適用した。 貼付けに際し、グラインダーによる表面処理の後、エポ キシ樹脂プライマーを塗布した。翌日まで静置養生の後、 エポキシ樹脂により繊維シートを貼り付けた。その後、

表-3 使用材料の機械的性質

コンクリート	圧縮強度			
176 J - F	36.0 N/mm ²			
社会	降伏強度	弾性係数		
亚大月刀	345 N/mm ²	200 kN/mm ²		
出去繊維	引張弾性率	引張強度		
灰赤敞船	240 kN/mm ²	4900 N/mm ²		

7日間の養生の後,載荷試験を行った。なお,繊維シートが接する隅角部は半径約20mmで面取りした。

ここで、本実験に使用した各材料の機械的性質を表-3 に示す。コンクリート強度は 36.0N/mm²,鉄筋の降伏 強度は 345N/mm² である。炭素繊維は引張弾性率 240kN/mm²,引張強度 4900N/mm²のものを使用した。

3. 結果と考察

3.1 荷重-変位の関係

図-3 に載荷試験により得られた荷重-変位曲線を示 す。変位は供試体中央部下部の変位を測定した。また表 -4 に、最大荷重と最大荷重時の変位、および終局時の

Nama	最大荷	苛重時	終局時		
Ivanie	最大荷重(kN)	変位(mm)	荷重 (kN)	変位(mm)	
基準(無補強)	127	1.32	—	—	
Sheet 0	330	5.06	320	7.10	
Sheet +45/-45	340	4.35	336	4.59	
Sheet 0/+45/-45	360	5.27	361	7.32	

表-4 試験結果

荷重と変位をまとめた。なお、供試体がせん断破壊によ り耐力を失った時点で載荷を終了した。また、いずれの 供試体もスターラップを配筋していない側で斜めひび 割れの発生を伴うせん断破壊により終局した。

基準である無補強供試体が127kNでせん断破壊により 終局に至ったのに対し,繊維補強を施した供試体はいず れも 300kN を超える荷重でせん断破壊により終局した。 各ケースの最大荷重は, *Sheet 0* が 330kN, *Sheet* +45/-45 が 340kN, *Sheet 0/+45/-45* が 360kN となり,繊維シート 編成条件で異なる結果が得られた。

最大荷重時の変位量は、Sheet +45/-45 がもっとも小さ く、次に Sheet 0, Sheet 0/+45/-45 の順であった。Sheet +45/-45 が脆性破壊するのに対し, Sheet 0, Sheet 0/+45/-45 に関しては、最大荷重に達した後にほぼ一定の耐荷重を 保った状態で変位量が増大する様子が観察された。この ように、ポストピーク挙動が繊維シートの編成条件によ って異なることは、多軸繊維シートによるせん断補強性 能を評価する上で、興味深い項目になると考えられる。 しかし、実験場の不備で集金のひずみデータが取得出来 なかったため、Sheet 0 と Sheet 0/+45/-45 でみられたよう なポストピーク以降の挙動を合理的に説明できなかっ た。また、Sheet +45/-45 の剛性が高くなっている点につ いて、本実験の範囲では解明することができなかった。 以上については、追試を行い明らかにしていく予定であ る。

3.2 破壊性状

写真-1に載荷試験後の繊維シートのはく離状況を示 す。ここでは、両側面の状況を示す。繊維シートに記し た白色斜線部分が繊維シートのはく離箇所を示してい る。また。赤色点線はひび割れ位置を示し、点線で囲ん だ部分は定着端部がはく離した部分を示す。Sheet 0 では、 両側ともにひび割れ上端部で定着はく離しており、定着 端部がはく離破壊することで終局に至ったものと思わ れる。Sheet +45/-45 については、片側面がひび割れから 上側全体がはく離破壊したのに対し、反対側面はひび割 れに沿って繊維が破断する破壊性状となった。これは、 補強繊維が有効に働いている理想的な破壊性状と考え

図-3 荷重-変位曲線

られる。Sheet 0/+45/-45 は両側ともに定着端部のはく離 破壊により終局に至った。なお, Sheet +45/-45, Sheet 0/+45/-45 の両ケースは最大荷重時での変状は観察され ず,終局時に前述した繊維シートのはく離/破断を伴い 耐力が低下した。定着端部のはく離破壊と繊維の破断に よる破壊の違いは、繊維シートとコンクリートとのせん 断付着強さと繊維の引張強さの関係に因ると考えられ る。従って、多軸繊維シートのコンクリートせん断付着 特性を明らかにすることで、定着端部のはく離破壊を引 き起こさないせん断補強に最適な多軸繊維シートが設 計できるものと期待できる。前述のポストピーク挙動と 考え合わせると、3軸タイプの多軸繊維シートにおいて 補強繊維を有効に活用し、かつ脆性的な破壊を抑制する 補強が可能になると考えられる。なお、本実験は3面巻 き補強であり, 閉合巻きや機械定着を施す場合には異な る結果となると推測される。

3.3 せん断補強性能

表-5に、載荷試験により明らかとなった補強耐力と、

計算により算出した繊維シートの負担するせん断耐力 V_f を示す。実験により得られた補強耐力は、各ケースの最 大荷重から、基準となる無補強供試体の最大荷重を減じ た値とした。また、補強せん断耐力は、反力(P)とせ ん断耐力(V_n)の関係($V_n = P/2$)から算出した。

また,繊維シートの受け持つ設計計算耐力は式(2)によ り算出した。Sheet +45/-45 については,斜めせん断ひび 割れと交差する片層のみが効いていると仮定した。Sheet 0/+45/-45 は,Sheet 0+Sheet +45/-45 の構成であると考え, 0°方向層と一方の斜め 45°層が効いていると仮定した。 なお,式(2)は閉合巻き補強時のシートが負担するせん断 耐力の設計式⁴⁾であり,既往の研究⁵⁾から3面巻き補強 のせん断耐力を閉合巻き補強の 60%として算出した。

 $V_f = K \cdot f_{fu} \cdot 2t_f (\sin \alpha + \cos \alpha) \cdot Z$ $\subset \subset \heartsuit, \quad K = 1.68 - 0.67R \quad (0.4 \le K \le 0.8)$ (2)

$$R = \left(\rho_f \cdot E_f\right)^{1/4} \left(\frac{f_{fu}}{E_f}\right)^{2/3} \left(\frac{1}{f_{c'}}\right)^{1/3}$$

$$(0.5 \le R \le 2.0)$$

 $\rho_f = 2 \cdot t_f \, / \, b$

- Z = d / 1.15 f_{fu} : 炭素繊維引張強度 (=4900 N/mm²)
- t_f :繊維シート厚さ(=0.056mm)
- α :繊維の編成が部材軸となす角度
 (=90° (0° 方向編成))
 (=45° (45° 方向編成))

$$E_f$$
 :炭素繊維弾性率 (=240 kN/mm²)

- $f_{c'}$: コンクリート強度 (=36.0 N/mm²)
- *b* :梁幅 (=150 mm)
- *d* :梁有効高さ(=237.5 mm)

設計値に比べ,実験値から算出したせん断補強耐力が 大きく上回る結果となった。特に Sheet 0 に関しては, 既往の設計式(2)に良く一致するとの推測であったが,予 想外の結果となった。無補強供試体の破壊荷重からの増 分が既往の研究^{5),6)}と比較して高く,供試体の設計(形 状,配筋)を含め更なる検討を行う必要があると考えら れる。

斜め方向に編成した繊維シートについて, ここでは斜

(c) Sheet 0/+45/-45

写真-1 繊維シートはく離状況

11	5	已70时而且王祀	
		宝驗値	

++ 4. 账后 本子 44 台

Nama	実題	計算值 V_f		
INAILIC	補強耐力(kN)	補強せん断耐力(kN)	(kN)	
Sheet 0	203	101.5	47.6	
Sheet +45/-45	213	106.5	67.3	
Sheet 0/+45/-45	233	116.5	114.9	

*無補強供試体:破壊荷重 127 kN (設計せん断破壊荷重 123.6 kN)

めひび割れと交差する方向の繊維のみが効いていると の仮定で算出した。しかし,**写真-1**に示した繊維シー トの破壊性状において,ひび割れに沿って繊維が破断し たケースと,定着端部のはく離を引き起こしたケースが 混在していることから,繊維の編成方向によるせん断補 強への効果に関しては,さらなる検討の必要性があると 考えられる。

ここで表-6に本実験の補強効率の実験値を示す。補 強効率は実験値から算出した補強せん断耐力を,式(2) における係数 $K \ge K = 1 \ge 1 \ge 1000$ にた値 とした。3面巻きにもかかわらず既往の研究⁵⁾に比べ補 強効率の実験値が非常に高くなっており,既往の計算式 (2)による評価では一致しない結果となった。一方で、こ のような高い補強効率を発現した原因について、本実験 の範囲内で検討することは困難であると考える。引き続 き、せん断付着特性の検討や材料試験を行い、評価手法 の検討を行う。

表-6 せん断補強効率の実験値

Name	補強効率の実験値
Sheet 0	0.90 (=101.5/113.3)
Sheet +45/-45	0.66 (=106.5/160.3)
Sheet 0/+45/-45	0.43 (=116.5/273.6)

図-4 荷重-ひずみの関係

また,連続繊維がひび割れと直交あるいは斜交するケ ースや,直交と斜交が相互に作用するケースなど,各層 がどのように応力を負担するか力学特性を検討するこ とも必要と考えている。

3.4 荷重-繊維シートひずみ関係

図-4にせん断ひび割れ発生近傍に取り付けたひずみ ゲージにより得られたひずみと荷重の関係を示す。ここ では、繊維シートの編成条件の違いが、各方向に貼り付 けたひずみゲージの値にどのように反映されるかを比 較検討することを目指した。なお、Sheet 0 の繊維はゲー ジNo.1, 2, 3 と平行、Sheet +45/-45の外層側の繊維はゲ ージNo.4, 5, 6 と平行である。また、せん断ひび割れは 載荷点と支点を結んで発生しており、ひずみゲージの貼 り付け位置とほぼ合致している。なお、図-4 では Sheet 0 と Sheet +45/-45 について図示する。Sheet 0/+45/-45 に 関しては紙面の都合上割愛する。

ひずみ量が急激に変化している荷重でせん断ひび割 れが発生したと考えると、せん断ひび割れ発生荷重は両 ケースともに 200kN を超えるものであった。なお、ひず みゲージ No.3 に着目すると、ひずみが 1000 μ を超える 荷重は、*Sheet 0* が 250kN, *Sheet* +45/-45 が 248kN であり、 同等であった。

次に,支点近傍のせん断ひび割れと直交する方向のひ ずみ(ゲージ No.6)をみると,Sheet 0 ではひずみに大 きな変化が見られないのに対し,Sheet +45/-45 では 200kNを超えたあたりで大きくなっているのがわかる。 繊維シートのひずみが小さいことは,繊維シートが負担 する応力が小さいためと考えられ,Sheet 0 の支点近傍は せん断補強に対し有効に働いていないと推測される。

E縮縁の 90° 方向ひずみ (ゲージ No.7) では,荷重 280kN 付近からひずみがマイナス側となっている。これ により,荷重の増加につれて中立軸が上昇し,コンクリ ートが圧縮力を受けている様子が推察される。また, *Sheet +45/-45* のゲージ No.8 をみると,250kN 付近から圧 縮側に転じている。同箇所の異なる方向のゲージ(No.2, 5,11) も 250kN 付近でひずみが急激に変化しており, ひび割れが開口したか,あるいは近辺の繊維シートのは く離が発生したものと考えられる。

さらに、せん断ひび割れと同方向のゲージ No.10, 11, 12 は、予想通りひずみの変化が小さく、他のひずみゲー ジと比較すると、繊維の方向性による違いが顕著に現れ ない結果となった。

このように、ひずみデータにおいても各繊維シートの 特徴が現れることを掴んだが、測定するひずみの方向と 繊維の方向の関係をよく加味して検討する必要のある ことがわかった。また、多軸繊維シートに作用するせん 断付着応力とひずみの関係については明らかにできて おらず,今後の検討課題であるとともに,この関係を明 確にすることで本実験により得られたデータをより詳 細に検討できるものと考える。

4. まとめ

本研究により得られた知見を以下にまとめる。

- (1) 多軸繊維シートの3面巻き補強により, RC梁の せん断補強効果があることがわかった。
- (2)載荷試験の荷重-変位関係から、多軸繊維シートの編成条件によってポストピーク挙動が異なることをつかんだ。
- (3) せん断ひび割れに直交する方向に繊維を編成する ことにより、繊維シートの定着端部のはく離破壊 を引き起こさせず、繊維を有効に活用できる可能 性を見いだした。
- (4) 繊維シートの負担するせん断耐力に関する既往の 設計式では、斜め方向に編成した多軸繊維シート のせん断耐力を試算するには適していないと考え られる。
- (5) コンクリート付着特性などの検討を行い,既往の 評価手法への適合性の検討と,新たな評価手法を 検討することが課題と考える。

参考文献

- 例えば、村橋久弘ほか:連続繊維による補修/補強
 一炭素繊維・アラミド編一,理工図書,2000
- 堀本 歴,宮里心一,保倉 篤:多軸繊維シートに よるコンクリート部材の補強に関する基礎的研究, コンクリート工学年次論文集, Vol.27, No.1, pp.343-348, 2005
- 堀本 歴,星野章仁,宮里心一:多軸炭素繊維シートによるコンクリート部材の補強に関する基礎的研究、コンクリート工学年次論文集,Vol.29, No.1, pp.483-488, 2007
- 土木学会:連続繊維シートを用いたコンクリート構 造物の補修補強指針,2000
- 宮島英樹,幸左賢二,杉岡弘一,富松康秀:RC梁の炭素繊維シート3面巻き補強に関する研究,コンクリート工学年次論文集,Vol.27, No.2, pp.1435-1440,2005
- 6) 中島規道,三上 浩,田村富雄,平井正雄:RC梁のせん断耐力に与えるアラミド繊維シートの貼付形状の影響,コンクリート工学年次論文集,Vol.24, No.2, pp.1411-1416,2002