論文 炭素繊維シートとCFアンカーを用いた耐震補強工法における CFアンカー埋込部の定着耐力

池谷 純一^{*1}·塚越 英夫^{*2}

要旨:コンクリート構造物(橋脚や桁など)を炭素繊維シートで補強する際に,部材を炭素繊維シートで閉 鎖型に巻き立てられない場合には,炭素繊維シートの端部を何らかの方法で定着する必要がある。この端部 定着材料の一つであるCFアンカー(炭素繊維シートの原材料である炭素繊維ストランドを束ねたもの)の コンクリート埋込部の削孔径,埋込深さ,埋込角度およびCFアンカーを構成する炭素繊維ストランドの本 数を要因とした定着耐力試験を実施し,CFアンカー埋込部の設計定着耐力式を提案した。 キーワード:炭素繊維シート,CFアンカー,耐震補強,定着耐力,設計定着耐力

1. はじめに

筆者らは炭素繊維シート(以下,CFシートと略称する) の端部定着材料として,CFシートの原材料である炭素繊維 ストランド(以下,CFストランドと略称する)を必要量束 ねた,通称CFアンカー¹⁾を提案している(**写真-1**および **図-1**参照)。

このCFアンカーを実構造物の補強に用いるためには、そ の仕様をCFシートの補強量に応じて設計する必要がある。 ここで設計上必要となるのは、CFアンカー扇部のCFシー トとの接着耐力およびコンクリート埋込部の定着耐力の2つ である。これらの耐力に影響する因子は、CFアンカーの扇 幅、扇長さ、CFストランド本数、CFアンカーの埋込深さ および埋込角度である。既報²⁾では、CFアンカー扇部につ いて接着耐力モデルを仮定し、その妥当性を試験により検証 した。そこで本論文では、CFアンカー埋込部の定着耐力に ついて検討する。

CFアンカーの埋込部は、一般的なあと施工アンカーと同 じく、孔内へ先込充填樹脂を注入した後に挿入される。この ため、CFアンカーの破壊モードとしては、あと施工アンカ ーと同様に、1)樹脂部とコンクリート面との付着破壊、2) コンクリートのコーン状破壊、3)アンカー材の母材破断、 の3つ³⁾が想定される。しかし、CFアンカー埋込部は、あ と施工アンカーの埋込部と異なり、鉄筋のヘッド、ふし、リ ブあるいはネジ等の付着に対して有効な突起がない。このた め、4) CFストランドと樹脂の界面で破壊するモード、も 考えられるが、埋込まれたCFストランドと樹脂の付着破壊 については既往の研究がほとんど見当たらない。そこで、一 般的なあと施工アンカーとは異なる破壊モード4) も含め、 本論文は、CFアンカー埋込部の設計定着耐力式を新たに提 案するものである。

2. 埋込部の破壊モード

2. 1 樹脂部のコンクリート面あるいは母材との付着破壊

CFストランド本数および埋込深さが異なるCFアンカー 埋込部が「コンクリートと樹脂」あるいは「母材と樹脂」の 界面で抜出し破壊する場合の耐力を、削孔径またはCFアン カー径と埋込深さから算出した付着面積にそれぞれの界面の 接着強さを掛け合わせて求めると、表-1のとおりとなる。 表-1に示すとおり、破壊面の違いによる耐力差はほとんど なく、計算上はいずれの界面で破壊してもおかしくはないと 考えられる。しかし、写真-2に示すとおり、抜出し破壊は 母材と樹脂との界面で生じている。この理由として、CFア ンカーの母材界面には突起がほとんどないのに対し、コンク リート面にはワイヤーブラシで脆弱な部分を取り除くことに より、多少の凹凸が生じているため、耐力が上昇することが 挙げられる。なお、一般的なあと施工アンカーでは、突起に よる表面の凹凸が大きく、樹脂との接着面積が大きいため、 コンクリートと樹脂界面で破壊するものと考えられる。

2. 2 コンクリートのコーン状破壊

写真-2に示すとおり、付着破壊はCFアンカーの母材界 面で生じた。この時に、コンクリートの表面近傍では、コン クリートも小さくコーン状に破壊していた。これは図-2 (a)に示すとおり、引抜力の反力を埋込部の近傍で取って いたためである。そこで、一般的に用いられている埋込部先 端から45度の範囲外に反力を取って引抜きを行った。この結 果は図-2(b)に示すとおり、上部のコンクリートのコー ン状破壊の面積が大きくなったが、埋込部の70%以上の長さ は母材の付着破壊となっていた。いずれの場合も母材界面の

*1 清水建設(株) 技術研究所生産技術センター新構工法グループ研究員 (正会員)

*2 清水建設(株) 技術研究所生産技術センター新構工法グループ上席研究員 工博 (正会員)

付着力が小さいために、典型的なコーン状破壊とはなってい なかった。また、その時の定着耐力を図-3に示すが、埋込 部近傍で反力を取ったデータは、そうでないデータに比べて 5%程度大きな値を示した。本来は引抜力の反力は遠くで取る べきであるが、試験装置の都合上、埋込部近傍の反力データ を集め、設計式については低減をかけることにした。

2.3 CFアンカーの母材破断

母材破断は、充分な埋込深さを有しているために抜出しを 生じない場合の破壊モードである。なお、 CFアンカーは、 自由に変形が可能なCFストランドを多数本束ねたものであ り、これに樹脂を含浸させて孔内へ施工される。このため、 CFストランド1本1本の直線性にはばらつきが生じやすく、 その破断耐力は、単純にCFアンカーの断面積(=CFスト ランドの総断面積)にCFストランドの保証引張強度を乗じ た値より低くなることが容易に想像される。また、埋込角度 が大きくなると、せん断で破断することもある。

-4に示す「母材と樹脂の付着破壊(抜出し)」と「CFアン

3. 埋込部の耐力

3.1 抜出し破壊する場合の耐力

図-5に示すとおり、CFアンカーを入隅部へ施工する場 合、CFアンカー扇部と埋込部との境界は、ドリルによる削 孔作業の制約から、折れ曲がることとなる。この場合、図-6に示すように、CFアンカー埋込部に引張力Pが作用する と、露出部との境界位置で埋込角度θに対して引張力Tとせ ん断力Qの分力が作用することになる。この作用力に対して CFアンカーが抜出し破壊する場合の定着耐力について検討 する。

図-5. CFアンカーの折曲がり

CFアンカー埋込部の直径は、CFアンカーを構成してい るCFストランド1本の断面積をa_{cs}, CFストランドの本 数を n_{cs} とすると、文献2より1.83・ $(n_{cs} \cdot a_{cs})^{1/2}$ で表せる。 これより、CFアンカー埋込部のCFストランド束と先込充 填樹脂との界面の表面積Scsは、底部を除き式(1)で表せる。

> $S_{cs} = 1.83 \cdot \pi \cdot L_{cs} \cdot (n_{cs} \cdot a_{cs})^{1/2}$ (1)

ここに、L_{cs}:CFアンカーの埋込深さ(mm)

また、式(1)より、CFアンカーが抜出し破壊する場合の定 着耐力P1は,式(2)で表せる。

 $P_1 = 1.83 \cdot \pi \cdot \tau_b \cdot L_{cs} \cdot (n_{cs} \cdot a_{cs})^{1/2} \cdot \cos\theta$ (2)ここに、Th: 先込充填樹脂の引張せん断接着強さ (N/mm²) *θ*: CFアンカーの埋込角度(°)

3.2 母材破断する場合の耐力

母材破断は、図-6に示すように、引張力Tとせん断力Q が作用して、CFアンカーが破断する2軸モデルである。こ の引張力Tとせん断力Qによって生じる複合応力がCFアン カーの引張強度あるいはせん断強度に達すると破断に至る。 しかし、本モデルによる破断耐力には、折曲がり部の下地コ ンクリートの平滑度やCFアンカーを構成しているCFスト ランドの直線性が大きく影響するため、理論的な提案式によ る評価は困難であると考えた。そこで、破断する場合につい ては、試験データに適合する回帰式から設計定着耐力式を導 くこととする。

4. CFアンカー埋込部の定着耐力の確認試験

先に述べたように、CFアンカー埋込部は抜出しあるいは 破断で最終破壊に至り、典型的なコーン状破壊は示さない。 そこで、CFアンカー埋込部の定着耐力確認試験方法として、 4.2 節に示す試験方法を考案して定着耐力の確認試験を実施 した。

4. 1 使用材料

表-2に使用材料の性質を示す。CFストランドにはCF シート同様、PAN系の高強度タイプのものを用いた。ただ し、含浸接着樹脂が含浸しやすいよう、炭素繊維素線同士の ばらけ防止用に繊維表面へ塗布されているサイジング剤量は、 0.2%と低いものとした。

使用材料	性質			
コンクリート	呼び強度 18 N/mm ² , 試験時圧縮強度 25 N/mm ²			
CFストランド	繊維素線数 24000 本, サイジング剤 0.2%, 断面 積 0.87mm ² , CF アンカー引張強度 3400N/mm ² 以上, 弾性係数 210~269kN/mm ²			
プライマー	混合粘度 2350mPa・s, コンクリート付着強さ 2.5N/mm ²			
先込充填樹脂	コンクリート付着強さ 2.8 N/mm ² , 引張せん断 接着強さ 18.5N/mm ² , 圧縮弾性係数 2.21kN/mm ²			
含浸接着樹脂	混合粘度2500mPa·s,引張強さ49.8N/mm ² ,引張 せん断接着強さ 12.8N/mm ² , 圧縮弾性係数 2.04kN/mm ²			

表-2 使用材料の性質

4.2 試験体の作製および試験方法

表-3に試験体一覧を、図-7に試験体の作製手順を、図-8に試験方法をそれぞれ示す。

表-3に示すとおり,試験の要因は、(1) CFストランド の本数、(2) 埋込深さ、(3) 埋込角度、(4) 削孔径および (5) プライマーの有無、の5種類とした。なお、削孔径D は孔内に充填される樹脂量およびCFアンカー挿入時の施工 性から建築物補強時に用いるCFアンカーで規定されている

値5)に準じて設定した式(3)で決定した。

$$D=2.3 \cdot (n_{cs} \cdot a_{cs})^{1/2}$$

(3)

表一3 試験体一覧					
CF ストラント゛	埋込	埋込	削孔径	プライマーの	
の本数	深さ	角度		有無	
(本)	(mm)	(*)	(mm)	11111	
	100				
	150			有	
40	200		14		
40	100		14		
	150			細	
50	200			***	
50	190	_	16		
	150				
	220	0		有	
	300				
	150		20		
80	170		20	無	
	220				
	240				
	300				
	300		251)	有	
110	270		23		
80	220	10		無	
	220	20	20	***	
	300	20			
注)1) 割门(汉)	の音いが是	十両十九に片ら	ス見線なな言	ワナスため オ(2)	

生)1)削孔径の違いが最大耐力に与える影響を確認するため,式(3) で求められる径より大きく設定

図-7に示すように、CFアンカー埋込部定着耐力確認試 験体は、コンクリート孔内へ先込充填樹脂を注入した直後に 含浸接着樹脂を含浸させたCFアンカーを挿入して作製した。 CFアンカー挿入時には余剰な先込充填樹脂が孔内からあふ れ出るため、CFアンカー挿入後にこれを除去した。また、 コンクリート外に出ているCFアンカーは棒状に硬化させ、 その外側に鋼製パイプを取り付け、隙間に静的破砕材を充填 して固定した。図-8に示すように、試験体の加力は、CF アンカーに定着した鋼製パイプを、センターホール型油圧ジ ャッキを用いて引っ張ることにより行った。

ω ω²

図-8 CFアンカー埋込部の定着耐力確認試験方法

4.3 試験結果

表-4に試験結果を示す。表-4中の埋込深さ 150mm で CFストランド本数が40本および80本のものの最大耐力を 比較すると、埋込深さが同じでも、CFストランド本数が多 いほど、耐力は高くなることが分かる。一方、CFストラン ド本数が40本のCFアンカー埋込部の最大耐力は、埋込深さ が深くなるほど高くなり、その破壊モードは抜出しから破断 へ移行していくことが分かる。この傾向はCFストランド本 数が80本のCFアンカーでも同様である。なお、CFストラ ンド本数80本、埋込深さ 300mmの試験体の結果より、この 範囲内での最大耐力は削孔径の相違およびプライマー有無の 影響を受けないことが確認できた。

		表一	4 試験	結果		
CF ストラント	埋込	埋込	削孔	プライマ	最大	石中南
の本数	深さ	角度	径	ーの	耐力	11反 反 エード
(本)	(mm)	(°)	(mm)	有無	(kN)	
	100				61.0	抜出し
	100				71.0	抜出し
	100				67.0	抜出し
	150			右	106.0	抜田し
	150				111.0	7次日12
	200					破断1)
	200				131.0	破断
40	200	0	14		112.0	破断
.0	106	Ũ			63.3	抜出し
	105				65./	接出し
	105				90.8	振用し
	152				105.5	拔出し
	153				106.0	抜出し
	202			無	101.7	破断
	203				120.3	抜出し
	202				114.3	していたい
-	194				147.5	扱田し
50	195	0	16		154.5	拔出し
	198				148.8	抜出し
80	150	0	20		126.0	抜出し
	150				104.0	抜出し
	150				135.0	換出し
	220				199.0	振出し
	220			+	162.0	抜出し
	300			伯	232.0	抜出し
	300				230.0	破断
	300				251.0	<u>仮断</u>
	300				230.0	石中学校
	300				252.0	石皮除斤
	154			無	159.3	抜出し
	154				140.7	抜出し
	155				111.3	抜出し
	150				135.8	抜出し
	148				136.8	扱出し
	151				143.3	扱田し
	173				195.7	抜出し
	178				159.7	抜出し
	183				175.3	抜出し
	223				219.0	抜出し
	221				164.8	板出し
	224				211.0	12日し 振出し
	225				225.0	拔出し
	224				220.8	抜出し
	246				203.8	抜出し
	243				207.2	抜出し
	246				216.5	抜出し
	245			1	251.2	1次出し

	300				217.0	抜出し
	300				248.0	抜出し
	300				221.0	抜出し
	304	0			264.5	抜出し
	305		20	/mr.	256.8	抜出し
80	304	0	20	兲	289.3	抜出し
00	301				232.8	破断
	300				238.8	破断
	301				247.8	破断
	300				259.0	破断
	300	0	25	有	145.0	抜出し ²⁾
	300	-	-		245.0	破断
	270				312.3	抜出し
110	280	0	22	4冊	282.7	抜出し
110	277	0	25	***	286.8	抜出し
	272				286.5	抜出し
	219	12			202.7	抜出し
	220	11			179.3	抜出し
	221	14.5			159.2	抜出し
	225	8			210.8	破断
	227	10			214.7	破断
	224	11			203.7	抜出し
227 224 221 225 80 224 225 80 224	221	21	20	20 毎	177.0	抜出し
	225	21			158.8	抜出し
	224	22			174.0	抜出し
	223	21		20	700	160.7
	224	19			166.3	破断
	222	21			176.2	破断
	305	20			167.3	破断
	303	22			211.5	破断
	304	21			194.8	破断
	301	21			161.7	破断
	300	19			182.2	破断
	305	20.5			159.7	破断
注) 1) 計測	器の不調	によるテ	「ータ喪失	-		

2) 鋼製パイプからの抜出しのためデータ分析より除外

5. 設計用定着耐力式の提案

5. 1 抜出し破壊する場合

図-9に試験で得られた抜出し破壊した試験体の最大耐力 と式(2)中の $L_{\alpha} \cdot (n_{\alpha} \cdot a_{\alpha})^{1/2} \cdot \cos\theta$ との関係を示す。図-9に示すとおり、式(2)中の $1.83 \cdot \pi \cdot \tau_b$ が 106 で、試験で得 られた最大耐力と $L_{\alpha} \cdot (n_{\alpha} \cdot a_{\alpha})^{1/2} \cdot \cos\theta$ とは良い相関(相 関係数=0.96)を示すことが分かる。この結果から、式(4)は試 験データの平均値を表す回帰式として適切であると判断され る。

$$P_{l} = 106 \cdot L_{cs} \cdot (n_{cs} \cdot a_{cs})^{1/2} \cdot \cos\theta \tag{4}$$

図-9 最大耐力と $L_{cs} \cdot (n_{cs} \cdot a_{cs})^{1/2} \cdot \cos \theta$ の関係

また,式(4)の95%信頼下限である式(5)は,抜出し破壊する場合のCFアンカー埋込部の設計定着耐力式として妥当であると判断される。

$$P_{I}^{\mathscr{G}} = 86 \cdot L_{cs} \cdot (n_{cs} \cdot a_{cs})^{1/2} \cdot \cos\theta \tag{5}$$

5.2 母材破断する場合

次に破断した試験体の結果について分析を行う。分析には、 4.3節で得られた破断した試験体の結果の他に、表-5に示す 最大 50°程度まで埋込角度を設けて行われた試験結果⁶⁾を 用いる。両試験で使用しているCFストランドの種類は同一 であるが、図-10に示すように、今回の試験で用いているC Fストランドの外周には炭素繊維素線の直線性を増す工夫 としてポリエステル繊維を巻き付ける織糸処理が施されて いるが、表-5の試験で用いているCFストランドには織糸 処理がなされていない違いがある。今回の試験で得られた織 糸処理有りデータと表-5に示した織糸処理無しデータを 正規化することが有用であると考え、得られたデータを埋込 角度0°の破断データの平均値σ。(織糸処理有りデータでは 3400 N/mm², 織糸処理無しデータでは 2100 N/mm²) で除 した応力度比で検討を行うこととする。応力度比を縦軸に、 埋込角度を横軸にプロットすると図-11 に示すとおりとな る。

破断する試験データに適合する回帰式モデルとしては、抜 出しモデルと同様な cos θ で表現できるモデルで、かつ、簡 易なモデルが工学的にも有用と考えられることから、cos θ のベキ乗で表現できる回帰式を検討した。結果として、図ー 11 に示すような cos³ θ の回帰モデルが良好な適合性を示し た。図ー12 には縦軸を最大強度で表した場合の試験値と回帰 式および 95%信頼下限式との関係を示す。図ー12 に示すと おり、破断時の最大強度は、式(6)で、その 95%信頼下限は式 (7)でそれぞれ表せる。これより、破断する場合のCFアンカ ー埋込部の定着耐力式およびその 95%信頼下限式は、それぞ

表-5 試験結果(織糸処理無し)

れ,式(6)および式(7)にCFアンカーの断面積を乗じた式(8) および式(9)で表せる。

以上のことから、織糸処理したCFアンカーが破断する場合のCFアンカー設計定着耐力式として式(9)が適切である と判断される(織糸処理無しのものは実使用しない)。

$\sigma = 3400 \cdot \cos^3\theta$	(6)

$\sigma^{5} = 2645 \cdot \cos^{5}\theta$	(7	Ţ)
		1	'

 $P_2 = 3400 \cdot n_{cs} \cdot a_{cs} \cdot \cos^3\theta \tag{8}$

$$P_2^{95} = 2645 \cdot n_{cs} \cdot a_{cs} \cdot \cos^3\theta \tag{9}$$

5. 3 設計用定着耐力式

5.1節で求めた抜出し破壊する場合の定着耐力式と5.2節で 求めた破断する場合の定着耐力式を重ね合わせると図-13 に示すとおりとなる。なお、図-13中の●は、CFストラン ド 80 本からなるCFアンカーの扇部をコンクリート上面へ 貼り付けたCFシート上へ貼り付け、CFアンカー埋込部側 を引っ張った場合(図-14参照)のCFアンカーの折曲がり 箇所での破断データ⁷⁾である。角度45°でコンクリートへ埋 め込まれたCFアンカーに引張力を作用させると、CFアン カーの折曲がり箇所で破断することが容易に想像できる。そ こで、本データをCFアンカー埋込部の埋込角度45°におけ る破断データとしてプロットした。図-13から、データのば らつきを除けば、 n_s =80本で埋込深さが 300mmの試験体で は、CFアンカーの破断で、 n_s =80本で埋込深さが 220mm のものでは抜出しでそれぞれ最大耐力が決定されることにな

図-14 45°データ用試験体⁷⁾

る。両データの回帰曲線は埋込角度24.9°で交差しており、こ の交点より角度が大きくなると破断しやすくなるものと考え られる。

また、両データの95%信頼下限式を求めると式(10)で表現 でき、これをプロットすると図-15の太線となる。図-15 に示すとおり、試験結果は式(10)で安全側に評価されており、 式(10)はCFアンカー埋込部の設計定着耐力式として妥当で あると判断される。

なお,2.2節で示した反力の取り方による低減を考慮すると, 一部のデータが式(10)を若干下回るが,ほとんど問題はない と考える。

6. まとめ

CFシート端部を合理的に定着するCFアンカーの破壊モ ードに準じた埋込部の設計定着耐力式について検討を行った。 本試験より得られた知見を以下に示す。

(1) CFアンカー埋込部は、樹脂部とCFアンカー界面の 付着破壊(抜出し)あるいはCFアンカー破断のいずれかの モードで破壊する。

(2) CFアンカー埋込部が抜出しあるいは破断する場合の 定着耐力式を導出した。

(3)(2)で得られた式の 95%信頼下限式を組み合わせ, CFアンカー埋込部設計定着耐力式として提案した。

参考文献

- 1)清水建設他:炭素繊維シート端部定着材料「CFアンカー」, 建設技術審査証明報告書,建技審証第0603号,2006.11
- 2)池谷純一,塚越英夫:炭素繊維シートとCFアンカーを用 いた耐震補強工法におけるCFアンカー扇部の接着耐力, 日本建築学会大会学術講演梗概集IV, pp.93-96, 2008.9
- 3)日本建築学会:各種合成構造設計指針・同解説, pp.210-212, 1985
- 4)守屋嘉晃,橋本敏男,高橋仁,川上修,伊藤嘉則:接着系 あと施工アンカーの引き抜き耐力に及ぼす各影響因子に関 する研究(その1 実験結果),日本建築学会大会学術講演 梗概集C-2, pp.71-72, 2002.8
- 5)SR-CF工法研究会:既存建築物の耐震改修設計施工指針 S R-CF工法(改訂版),建築防災協会技術評価書,建防災 発第1978号, pp.8.11-8.12,2006.6
- 6)塚越英夫,神野靖夫,池谷純一:炭素繊維ストランドアン カー(CFアンカー)の引抜き性状,日本建築学会大会学 術講演梗概集C-2, pp.421-422, 2000.9
- 7)池谷純一,塚越英夫,杉山哲也:埋込部との間に角度を有 するCFアンカー扇部の接着耐力,土木学会第62回年次学 術講演会, pp.735-736, 2007.9