論文 農業用水路コンクリートに生じる摩耗に関する調査手法

加藤 智丈*1・石神 暁郎*2・渡嘉敷 勝*3・森 充広*4

要旨:粗骨材の露出割合を把握することにより,農業用水路コンクリートに生じる摩耗を定量的に把握する 手法について検討を行った。この手法により実構造物の粗骨材露出割合を測定した結果,気中部,水中部お よび干満部で明確な差があることが分かった。また,同一地点において,水路コンクリートの表面粗さ指標 である算術平均粗さ(Ra),最大高さ(Rz)との相関を調べた結果,粗骨材露出割合と相関性があることが分 かった。次に,水噴流摩耗試験により,詳細な検証を実施した結果,より高い相関性が示され,粗骨材露出 割合を算出する本調査手法の信頼性が確認できた。

キーワード:農業用水路コンクリート,摩耗,粗骨材露出割合,算術平均粗さ,最大高さ,水噴流摩耗試験

1. はじめに

近年,農業水利構造物における主要な劣化要因である 摩耗のメカニズムや構造物に与える影響を解明するた めの研究が始められている。気中環境で供用される一般 的な土木構造物とは異なり、農業水利構造物は用排水路 や貯水施設など、水と接する環境で供用される場合が多 い。中でも用排水路においては、流水に接して供用され るため、流水や砂礫による摩耗が生じやすい。この摩耗 により,水路コンクリート表面の変状による水理性能, 水利用性能の低下やかぶりコンクリートの減少に伴う 構造性能の低下が引き起こされている¹⁾。これら摩耗に より低下した各性能を回復させるため、補修が実施され ているが,農業水利構造物は,コンクリート表面の粗骨 材露出が顕著であり, 部位によってはモルタル分が消失 し粗骨材のみが露出している場合もみられる。しかし、 粗骨材ならびにモルタル分に対する補修材の付着特性 の相違については確認されておらず、農業水利構造物の 補修に対する補修材の要求性能を明らかにする必要が ある。このような背景から,筆者らは,粗骨材露出割合 が補修材の各性能に与える影響について研究を行って おり、簡易な粗骨材露出割合の調査手法を検討している。

一方,摩耗した水路コンクリートの表面粗さ指標とし て用いられている算術平均粗さ(Ra)や最大高さ(Rz) を算出することにより,通水性能を評価する手法が確立 されつつある²⁾。ここで,Raは,測定した摩耗深さより 得られる粗さ曲線の平均線からの高さの絶対値の平均 を表したものであり,Rzは,粗さ曲線の山高さの最大値 と谷深さの最大値から算出した最大高低差である。しか しRaやRzの算出には,レーザー変位計やデータロガー, PC などの機器による摩耗深さの測定が必要となり,現場 で容易に測定することが困難である。今後,粗骨材露出 割合から Ra および Rz を導き出すことができれば,より 簡易な調査手法として活用できる可能性がある。

これらを踏まえ、本報では、水路コンクリートに生じ る摩耗に関する調査手法として、粗骨材露出割合を定量 的に把握する方法を検討し、供用環境の異なる水路コン クリートの表面状態を調査した結果について報告する。 また、調査結果から Ra および Rz と粗骨材露出割合には 相関性があることが明らかになったため、水噴流摩耗試 験による詳細な検証を実施して、考察を行った。

2. 実構造物調査

2.1 調査概要

水路コンクリートにおける供用環境の相違による摩 耗状況を確認するため、実構造物において現地調査を行 った。調査対象水路の概要を表-1に示す。両水路とも コンクリート製三面張り開水路であり、側壁を対象に調 査を行った。現地調査では、摩耗深さの計測と写真撮影 による画像データの取得を実施した。

表一1 調查対象水路概要

対象水路名		R 水路	M 水路		
形式		現場打ち	現場打ち		
		フリューム型	フリューム型		
水路幅		1.8m	1.2m		
側壁	高さ	1.0m	1.5m		
	水中部	0~0.4m	0~0.5m		
	干満部	0.4~0.7m	0.5~0.9m		
	気中部	0.7~1.0m	0.9~1.5m		
調査部位		側壁	側壁		

*1 ショーボンド建設(株) 補修工学研究所 (正会員)
*2 ショーボンド建設(株) 補修工学研究所 農博
*3 農村工学研究所 施設資源部 水利施設機能研究室 主任研究員 園修 (正会員)
*4 農村工学研究所 施設資源部 水利施設機能研究室 主任研究員 農博 (正会員)

(1) 摩耗深さの計測

水路コンクリート表面の摩耗深さをレーザー変位計 (KEYENCE LK-500)により計測した。計測では,表-1に示した各部位の境界線(例えば,R水路の気中部と 干満部では0.7mの位置)から70mm下方に走査線を設 け,上下流方向に走査して実施した。各走査線上で,1mm 間隔で500点,摩耗深さを計測した。計測した摩耗深さ から,RaおよびRzを算出した。

(2) 粗骨材露出割合の調査手法

水路コンクリートの摩耗状況を調査するため,写真撮 影により取得した2次元の画像データを用い,画像処理 により粗骨材露出割合の算出を実施した。この調査手法 は,広く普及している一般的なデジタルカメラを用い, 撮影範囲を清掃し,写真を撮影するといった,簡易な作 業で実施が可能である。

本調査における画像データの取得は、摩耗深さを計測 した同一箇所で実施した。また、被写体との距離、すな わち画像データのデータ範囲によって、粗骨材露出割合 の算出結果に与える影響を検証するため、データ範囲を 3条件選定して実施した。デジタルカメラによる撮影条 件を表-2に示す。

本報においては、摩耗に関する調査手法としての適用 性を検証する目的であるため、粗骨材のみを分離して実 施した。粗骨材は粒径 5mm 以上でおよそ 9 割を検出で きるとの知見から³⁾、粗骨材と細骨材の閾値としてこの 数値を用い、粗骨材とモルタル分の分離を実施した。な お、データ範囲端部の骨材については、閾値以上の大き さがあれば粗骨材としてカウントした。分離には画像処

記録画像横縦比	4:3		
記録画素数(横×縦)	1,600×1,200		
記録画像ファイル形式	JPEG		
	100mm×75mm		
データ範囲(横×縦)*	200mm×150mm		
	300mm×225mm		

表-2	写直撮影条件
1 2	<u>ーナデルボイー</u>

※検出精度を確認するため、3条件で撮影を実施

理ソフト(KEYENCE VHX-900 面積測定ソフト)を用い, 粗骨材とモルタル部との境界の輪郭線を記し,輪郭線の 内側を粗骨材面積とした。粗骨材露出割合は,式(1)に より算出した。

 $A = A_G / A_T \times 100 \tag{1}$

ここに、A: 粗骨材露出割合(%)、A_G: 粗骨材面積の総 和 (mm^2)、A_T: 画像データの全面積 (mm^2) である。

2.2 調査結果

(1) 供用環境の相違が与える影響

図-2にレーザー変位計によって求めた調査箇所に おける Ra および Rz の算出結果を示す。横軸に示した調 査箇所名の表記は、アルファベットは水路名、後ろの数 字は測定箇所(任意の1~3箇所を選定)を示す。

Ra はいずれの調査箇所においても水中部が最も大き く,流水や砂礫による摩耗の影響を指し示す結果となっ た。一方,気中部と干満部については大小の傾向は見ら れなかった。また,RzについてもRaの結果と同様に, いずれの調査箇所においても水中部が最も大きくなっ

図-2 調査箇所における表面粗さ指標の算出結果 (上:Ra 算出結果,下:Rz 算出結果)

図-3 粗骨材露出割合の算出に用いた画像データ例(対象箇所 R1) (左:気中部,中央:干満部,右:水中部)

図-4 粗骨材露出割合の算出結果

図-5 データ範囲と粗骨材露出割合との関係

た。一方,干満部の方が気中部に比べやや大きくなる傾 向が見られた。

粗骨材露出割合の算出に用いた画像データの例を図 -3に、各調査箇所における粗骨材露出割合の算出結果 を図-4に示す。粗骨材露出割合の算出に用いた画像デ ータのデータ範囲は、100mm×75mm(横×縦)である。 図-3に示すとおり、画像データから水路コンクリート の表面状態が大きく異なることが明らかになった。すな わち、気中部においては、モルタル分が存在しており、 粗骨材の露出は極めて小さい。これに対し、干満部や水 中部ではモルタル分が損失しており、粗骨材の露出が顕 著であった。また、干満部と水中部を比較すると、露出 している粗骨材が水中部の方が大きいことが分かった。 粗骨材露出割合は、すべての調査箇所において、水中部 が最も大きく、次いで干満部、気中部という順に小さく なることが明らかになった。

これらの結果により、これまで定性的に捉えられてき た通水部と未通水部の表面状態の相違を定量的に示す ことができた。水路コンクリートの表面状態の相違要因 については、以下のように考えられる。通水部では流水 や砂礫によりモルタル分が先行して摩耗流出するため、 粗骨材露出割合が大きくなる。また、通水部であっても 干満部と水中部では結果が異なり、干満部は砂礫の影響 を受けにくいこと、水中部は常時流水にさらされている ことなどから、水中部の方がモルタル分の摩耗流出が顕 著であるため、粗骨材露出割合が大きくなる。未通水部

(気中部)では流水による摩耗が生じないため,粗骨材 露出割合は小さくなる。

また、気中部の調査結果について、RaおよびRzは干 満部と同程度であったが、粗骨材露出割合は干満部と異 なりほとんど検出されなかった。これは、RaおよびRz の算出において、気中部では表面気泡などの影響を受け たためと考えられる。図-3から明らかなように、気中 部の画像はそのほとんどがモルタル分で占められる。特 に、摩耗の進行していないモルタル分では、表面気泡や ひび割れなどの影響により、RaおよびRzが高めに検出 されることも考えられるため、その算出に際しては留意 する必要があるものと考えられる。

(2) データ範囲が検出精度に与える影響

R 水路の側壁を対象とし、画像データのデータ範囲を 変え、粗骨材露出割合を算出した結果を図-5に示す。 検証は、気中部、干満部および水中部について実施した。

気中部と干満部の結果から、データ範囲が大きくなる (被写体との距離が離れる)につれ、粗骨材露出割合が 大きくなることが明らかになった。これに対し、水中部 については、データ範囲に関係なく、粗骨材露出割合は 変わらなかった。これは、水中部では粗骨材露出が顕著 で、かつ露出割合が一定であるため、検出誤差が小さい ためと考えられる。一方、気中部については、ほとんど 粗骨材の露出がないため、データ範囲が大きいほど粗骨 材が含まれ易くなることが考えられる。また、干満部に ついては、気中部と同様の理由に加え、底版方向に下が るにつれて摩耗の影響が大きくなり、粗骨材露出割合が 増加すると考えられる。これらの要因に加え、画像デー タの1画素あたりのデータサイズにも要因がある。すな わち、300mm×225mm であれば1画素あたり0.1875mm ×0.1875mm であり、100mm×75mm であれば0.0625mm ×0.0625mm となるため、大きなデータ範囲で撮影した 場合、粗骨材の占有面積を計算する際の人為誤差が大き くなると考えられる。これらの結果より、正確な粗骨材 露出割合を算出するには、供用環境の異なる他の領域が データ範囲内に入らないように注意すること、また、画 像処理可能なデータ範囲を適切に設定する必要がある と考えられる。

2.3 表面粗さ指標と粗骨材露出割合との関係

算出した Ra および Rz と粗骨材露出割合との関係を図 -6に示す。粗骨材露出割合が大きくなるにつれ, Ra および Rz は大きくなる傾向を示した。上述のように, 粗骨材露出割合が小さいということは,摩耗が進行して おらず,水路コンクリート表面のモルタル分が存在する ことを示し,結果,気中部のように Ra および Rz は小さ くなる。これに対し,粗骨材露出割合が大きくなるとい うことは,摩耗の進行によりモルタル分の流出が生じて いることを示し,水中部のように水路コンクリート表面 の凹凸が著しくなり, Ra および Rz は大きくなる。

これら現地調査結果より, Ra および Rz と粗骨材露出 割合の間には相関性があると考えられ,より詳細な検証 を室内試験により実施することにした。

3. 水路コンクリートの表面粗さ指標と粗骨材露出割合 との相関性の検証

先の章で述べたように、水路コンクリートの表面粗さ 指標(Ra, Rz)と粗骨材露出割合には相関性があること が明らかになった。そこで、水噴流摩耗試験機を用いた 促進試験により、様々な水路コンクリートの表面状態を 再現し、検証を実施した。

3.1. 試験概要

(1) 水噴流摩耗試験機

水噴流摩耗試験機の概要を図-7に示す。本試験機は,

試験体を取り付ける本体と高圧水を吐出させる装置に より構成され,試験体を設置したドラムを一定速度で回 転させることで,各試験体に均一に扇型の高圧水を作用 させることができる⁴⁾。実施した水噴流摩耗試験の試験 条件を表-3に示す。摩耗した水路コンクリートの表面 状態のデータ数を増やすため,試験時間を1時間から50 時間の計7ケースとした。

(2) 試験体概要

試験には4種類の試験体を用いた。試験体の配合一覧 を表-4に示す。試験体は、粗骨材が同じ単位量となる ように配合し、摩耗を促進させるため高水セメント比で 作製した。試験体の寸法は296mm×142mm、高さは60mm である。また、水噴流摩耗試験による摩耗範囲は65mm ×142mmである。

(3) 測定項目

水噴流摩耗試験による再現性を確認するため,現地調 査と同様にレーザー変位計によるコンクリート表面の 摩耗深さの計測を実施した。摩耗深さは試験体の長辺方

図-7 水噴流摩耗試験機の概要⁴⁾

表一	3	試験条件
11	0	叫水水下

項目	条件				
高圧水吐出圧力	15.0 MPa				
高圧水吐出流量	22.0 L/min				
ドラム回転速度	30 rpm				
ノズル高圧水噴射角度	40°				
試験時間	1, 2, 3, 5, 10, 30, 50h				

	圧縮強度	粗骨材の	水セメン	空気量	細骨材率	単位量 (kg/m ³)			
試験体No.	2	最大寸法	卜比			水	セメント	細骨材	粗骨材
	(N/mm^2)	(mm)	(%)	(%)	(%)	W	С	S	G
15N01	15.0	20	0.6.0		45.0	105	101	0.21	1004
15N02	15.9	20	96.9	1.1	45.9	185	191	831	1004
21N01	22.7	20	78.1	1.5	46.0	185	237	837	1004
24N01	23.5	20	70.9	1.2	46.1	185	261	839	1004

表-4 試験体の配合一覧

向にレーザー変位計を走査させ、1mm 間隔で計測した。 この操作を短辺方向に5mm 間隔で計28本実施した。こ のうち、均一に摩耗している試験体中心部 50mm× 70mm の範囲の走査線13本を選定し、RaおよびRzを算 出し、平均して結果とした。また、粗骨材露出割合を算 出するため、デジタルカメラによる写真撮影を実施した。 撮影条件は現地調査(表-2)と同じ条件である。 3.2 試験結果

(1) コンクリートの表面粗さの経時的変化

水噴流摩耗試験の試験時間に伴う各指標の推移を図 -8に,試験後の試験体状況を図-9に示す。試験の結 果,いずれの試験体についても,試験初期においては大 きな増加を示すが,試験時間の経過とともに収束する傾 向を示した。これは,本試験機が高圧水を吐出し,モル タル分のみを選択的に摩耗させるものであり,図-9の ように,摩耗の進行に伴い粗骨材が露出し,摩耗を受け

図-9 水噴流摩耗試験後の試験体状況 (試験体No.21N01)(上:2時間後,下:50時間後)

るモルタル分の割合が減少するため、各表面粗さ指標の 増加速度が低下したためと考えられる。また、水セメン ト比が大きくなると摩耗深さは大きくなり、RaやRzも 大きくなる傾向が見られたが、同一の水セメント比の試 験体(試験体Na15N01, 15N02)においても、結果にはば らつきが見られた。このばらつきは、計測範囲における 粗骨材の分布などのばらつきによるものと考えられる。 コンクリートに含まれる粗骨材では、その分布、寸法、 形状などにばらつきがある。このため、粗骨材露出割合 が同程度であっても、摩耗した表面の凹凸状況が相違し、 RaおよびRzにばらつきが生じたものと考えられる。一 方、算出したコンクリートの表面粗さ指標については、 Raが0.3mm~1.8mm、Rzが1.6mm~8.3mmの範囲で分 布し、現地調査の結果を含む範囲内にあることが分かっ た。

粗骨材露出割合は,多少の上下はあるものの,Ra や Rz と同様に,試験初期においては大きな増加を示し,試 験時間の経過に伴い,露出割合の増加速度は小さくなっ た。また,試験体No.15N01 と 15N02 の 50 時間後の試験 結果は,ほぼ同一の値に収束した。これは,RaやRz と 同様に,粗骨材の露出に伴い,摩耗を受けるモルタル分 の割合が減少することによると考えた。すなわち,摩耗 による表面粗さ指標の変化と同様に粗骨材露出割合も 変化することを示したものである。

図-10 表面粗さ指標と粗骨材露出割合との関係 (左:Raと粗骨材露出割合との関係,右:Rzと粗骨材露出割合との関係)

(2) コンクリートの表面粗さ指標と粗骨材露出割合との相関性

表面粗さ指標(Ra, Rz)と粗骨材露出割合との関係を 図-10に示す。これは、水噴流摩耗試験を実施した全 ての試験体の算出結果を示したものである。この結果か ら、Ra および Rz と粗骨材露出割合には高い相関性があ り、比例関係に近い線形をとることが明らかになった。 この関係は、摩耗が生じると、平滑であった水路コンク リートの表面状態が、モルタル分の損失により粗骨材露 出を生じ、粗さが増加するという現象を示すものである。

以上,促進試験により,粗骨材露出割合を算出する本 調査手法の信頼性が確認され,かつ,算出された粗骨材 露出割合を水路コンクリートの表面状態を表す指標と して活用できる可能性が示唆されたと考える。一方,実 構造物調査の結果では,RaおよびRzと粗骨材露出割合 の関係に,図-10のような高い相関性がみられなかっ た。この原因として,実構造物と促進試験に用いた試験 体では,最大粗骨材寸法や粗骨材量などの粗骨材露出割 合に影響を与える要素が異なること,摩耗深さの計測に 用いたレーザー変位計の走査線数が異なること,実構造 物では摩耗が進行していないモルタル分に表面気泡や ひび割れなどのRaおよびRzを高めに検出する要因が存 在することが考えられる。

4. まとめ

実構造物の現地調査結果および室内試験での検証に より,以下のことが明らかになった。

- (1) 水路コンクリートにおいて、これまで定性的に捉 えられてきた通水部と未通水部の水路コンクリー トの表面状態の相違を、Ra,Rzおよび粗骨材露出 割合により定量的に捉えることができ、未通水部 に比べ通水部では、いずれの値も大きくなる。
- (2) 水噴流摩耗試験機を用いた促進試験から,経時的 に粗骨材の露出が進行する状況を把握することが でき, Ra, Rz および粗骨材露出割合は,試験時間

の経過とともに増加速度が低下する。

(3) 水噴流摩耗試験機を用いた促進試験により,粗骨 材露出割合は、水路コンクリートの表面粗さ指標 である Ra および Rz と高い相関性が示された。こ のことから、本調査手法により算出した粗骨材露 出割合の信頼性が確認され、また、水路コンクリ ートの表面状態を表す指標として活用できる可能 性が示唆された。

一方,実構造物においては,最大粗骨材寸法や粗骨材 量などが不明であることが多く,これらは水路コンクリ ートの表面粗さ指標(Ra および Rz)や粗骨材露出割合 に影響を与える要因である。そのため,これら要因が粗 骨材露出割合に与える影響を検証する必要があると考 える。今後,本調査手法の精度を向上させるとともに, 粗骨材露出割合が補修材の各特性に与える影響につい て検証する予定である。

謝辞:農村工学研究所 森丈久氏,中矢哲郎氏からは, 貴重なご意見を頂きました。記してお礼申し上げます。

参考文献

- 長束勇,石神暁郎,石村英明,渡嘉敷勝,森充広: コンクリート構造物の補修技術の現状と農業水利 分野に適用する際の留意点,農業工学研究所技報, 202, pp.183-196, 2004
- 2) 中矢哲郎,渡嘉敷勝,森充広,森丈久:摩耗したコンクリート水路表層形状からの粗度係数推定手法, 農業農村工学会論文集,No.258, pp.23-28, 2008.12
- 3) 財団法人 日本規格協会: JIS A 0203-2006 コンクリ ート用語, JIS ハンドブック 11 土木 1 コンクリー ト製品, pp.25, 2008
- 2) 渡嘉敷勝,森充広,中矢哲郎,森丈久:水流摩耗試 験における吐出圧力および回転速度が摩耗性状に 及ぼす影響,コンクリート工学年次論文集,Vol.30, No.1, pp.705-710,2008