論文 表面補修後にひび割れを導入した部材のスケーリングと鉄筋腐食へ の乾湿および塩水の影響

澤田 賢吾^{*1}·大畑 卓也^{*2}·小林 孝一^{*3}·六郷 恵哲^{*4}

要旨:普通コンクリート単一供試体と、補修材に複数微細ひび割れ型繊維補強セメント複合材料(HPFRCC) やポリマーセメントモルタルを用いた積層供試体とを作製し、ひび割れを導入後に、融解過程に乾湿繰返し 作用を組み込み、塩水等による緩速凍結融解試験を行った。その後、供試体を割裂させ硝酸銀発色試験によ り塩分浸透状況を確認し、鉄筋をはつり出し、腐食面積率を算出した。試験結果より、乾湿繰返しと塩水の 有無に関わらず HPFRCC は高い耐スケーリング性と塩分浸透抑制効果を示した。塩水を用いるとスケーリン グ劣化は顕著となり、ひび割れを有する場合、ひび割れの角からのスケーリング劣化が顕著であった。 キーワード:緩速凍結融解試験、乾湿繰返し、塩水、HPFRCC、硝酸銀発色試験

1. はじめに

複数微細ひび割れ型繊維補強セメント複合材料(以下 HPFRCC)は、引張応力下において複数微細ひび割れや 擬似ひずみ硬化を生じる材料である。現在 HPFRCCは、 寒冷地の橋梁などに用いられており、その高い耐凍害性 が研究報告されている¹⁾。これは、マトリクス間の繊維 が架橋し、ひびわれ幅が抑制されるためと考えられてい る。しかし、凍結融解環境下では、融解過程で乾湿の繰 返しが作用する。乾湿が繰り返す場合、普通コンクリー ト(以下 NC)や普通モルタル(以下 NM)の耐凍害性 が低下することが報告されている²⁾。

スパイクタイヤの使用規制に伴い,寒冷地では塩化物 系の凍結防止剤が多量に散布され,凍害と塩害の複合劣 化が問題となっている。このため,塩水の影響を考慮し た耐スケーリング性についての研究が行われている³⁾。 しかし,NC に乾湿の繰返しが作用する場合,塩分の浸 透が速くなることが報告されており⁴⁾,スケーリング劣 化及び塩害が促進されることが考えられる。また,多く の既設構造物はひび割れを有しているが,凍結融解試験 にひび割れを有したコンクリートを用いた研究は少な いのが現状である。さらに,凍害によるスケーリング劣 化は,構造物の美観を大きく損なうため,美観の維持を 検討する必要がある。

そこで本研究では、HPFRCCを橋梁等の補修材として 適用することを考え、HPFRCCを補修材とする積層供試 体を作製した。また、比較用として補修材にポリマーセ メントモルタル(以下 PCM)と NM を積層した供試体と、 全断面を NC とした供試体とを作製した。その後、引張 試験により供試体にひび割れを導入し、融解過程に乾湿

*1	岐阜大学	工学部社会基盤工学科(正会員)
*2	岐阜大学	大学院工学研究科社会基盤工学専攻(正会員)
*3	岐阜大学	工学部社会基盤工学科准教授 博(工) (正会員)
*4	岐阜大学	工学部社会基盤工学科教授 工博 (正会員)

繰返し試験をはさみながら塩水等による緩速凍結融解 試験を行い,乾湿繰返しの有無,塩水の有無及びひび割 れの有無が耐スケーリング性に与える影響について検 討した。また,あわせて供試体の美観も目視により確認 した。続いて供試体を割裂させ,割裂面で硝酸銀発色試 験を行った。これより供試体内の塩分浸透状況を確認し, 各種補修材および乾湿繰返しの有無による違いを検討 した。さらに,割裂させた供試体から鉄筋をはつり出し, 鉄筋の腐食面積率を算出し,ひび割れ幅との関係につい て検討を行った。

2. 実験概要

2.1 供試体概要

梁供試体型枠(寸法:50×100×1800mm)に鉄筋(D10

材料	繊維 種類	W/C (%)	単位量(kg/m ³)										
			水	セメント	7号 珪砂	細骨材	粗骨材	AE 減水剤	高性能AE 減水剤	増粘剤	繊維	s/a	プレミッ クス材
NC	-	55	180	327	-	810	920	0.8175	-	-	-	47	-
NM	-	55	273	496	-	1289	-	-	-	-	-	-	-
PCM	_	-	292	-	_	-	-	-	_	-	-	-	1825
HPFRCC	PE	30	342	1264	395	-	-	-	39.92	0.9	14.6	-	-

表-1 配合表

供試休夕	圧縮強度	曲げ強度	空気量	スランプ	フロー値(mm)		
庆 武 体 石	(MPa)	(MPa)	(%)	(cm)	0打	15打	
NC	47.1	5.6	3.9	5.8	-	-	
NM	62.3	5.4	_	-	-	-	
PCM	35.9	1.4	_	I	Ι	-	
HPFRCC	35.8	9.4	15.7	I	135.5	162.0	
HPFRCC低air	72.0	9.1	5.0	1	131.0	162.5	

表-3 導入ひび割れ幅

表-2 各種材料の物性値

	ひび割れ幅(mm)											
卅弐休々		母	:材		補修材							
洪武仲石	湿	潤	乾湿		湿	潤	乾湿					
	1	2	1	2	1	2	1	2				
NC	0.137	-	0.500	-	0.337	-	0.415	-				
NM	0.324	0.282	0.209	0.259	0.484	0.633	0.487	0.387				
PCM	0.324	0.252	0.314	0.313	0.281	0.210	0.575	0.208				
HPFRCC	0.212	0.081	0.765	0.223	0.006	0.009	0.048	0.013				

を2本)を配置し、母材とする普通コンクリートを打設 した。梁供試体両端部には、それぞれネジ節鉄筋 D25(長 さ:約300mm)を配置し,鉄筋 D25の両端に2本の鉄 筋 D10 を溶接した。また表面補修を行う供試体の界面処 理として,遅延剤シートを用いて,材齢1日で骨材が2 mm程度露出するまで洗い出し処理を行い、その後表面 をいわゆる表乾に近い状態にして、各種補修材を積層さ せた。養生は湿布養生を2週間行った。その後,ひび割 れを導入する供試体に引張載荷を行った。供試体片(寸 法:50×100×100mm)を、コンクリートカッターを用い て切り出した (図-1)。切り出した供試体は、補修材面 を除く5面をシリコン樹脂でシーリングし、補修材面に 試験水を張れるように、シリコン樹脂で土手を作製した。 補修材は HPFRCC, PCM, NM とし, 積層高さは各種 10mm とした。また、補修材の無い NC のみの供試体(単 一供試体)も作製した。HPFRCCの練り混ぜには、ホバ ートミキサーとオムニミキサーを用い、同配合で練り混

ぜ方法を変えることにより 20%と 5%の 2 種類を目標空 気量とした。各種材料の配合を表-1 に示す。セメント には、早強ポルトランドセメントを使用した。NC には AE 減水剤 (ポゾリス No.70)を使用し、エントレインド エアーを混入した。HPFRCC には \$ 0.012×12mm の高強 度ポリエチレン繊維 (PE)を使用し、混和材として高性 能 AE 減水剤 (レオビルド SP8SX3)と増粘剤 (ハイメト 度ポリエチレン繊維 (PE)を使用し、混和材として高性 能 AE 減水剤 (レオビルド SP8SX3)と増粘剤 (ハイメト ロース)を使用した。また、PCM は補修材用 (低収縮タ イプ)を用いた。各種材料の物性値を表-2 に示す。

2.2 ひび割れ導入試験

ひび割れの導入方法を図-2 に示す。梁供試体両端の ネジ節鉄筋 D25 にカプラーを用いて、ネジ節鉄筋 (D25) を継ぎ足した。床に固定した鋼製の反力板とセンターホ ール型油圧ジャッキを用いて、徐荷後に残留ひび割れが 残る程度まで引張載荷を行った。荷重をロードセルによ り計測し、供試体の全体変位を4 個の高感度変位計によ り計測した。変位計はマグネットスタンドを用いて床に 固定し、変位の計測値から計測区間の変形を求め、載荷 時の制御に用いた。単一供試体は、鉄筋が腐食しやすい よう、ひび割れ幅が 0.4mm となるまで,積層供試体につ いては、母材のひび割れ幅が 0.4mm となるまで引張載荷 を行った。ひび割れは全断面に貫通していた。ひび割れ 幅は、母材側と補修材側のそれぞれでマイクロスコープ を用い計測した。母材と補修材のひび割れ幅を表-3 に 示す。

2.3 緩速凍結融解試験

凍結融解試験はASTMC 672 に示される,緩速凍結

融解試験に準じて行った。凍結過程は 20℃~-20℃で 17時間,融解過程は-20℃~20℃で7時間とし,24時 間で1サイクルとした。1サイクルの温度履歴を図-3 に示す。試験は、冷凍庫から供試体を出し入れするこ とにより行い、50サイクルまで実施した。供試体の補 修材面に張る試験水は、ひび割れを導入したものは塩 水(NaCl3%水溶液),ひび割れなしのものは塩水(NaCl 3%水溶液)および水道水とした。計測項目は、供試体 のスケーリング劣化による剥離量とした。今回は、供試 体の断面を一定としたため、面積あたりの剥離量ではな く、剥離の総量で評価を行った。剥離量は凍結融解5サ イクルごとに採取し、105℃の炉乾燥を行った後、乾燥 後の定質量を計測した。

2.4 乾湿繰返し試験

本研究は、実環境下に近づけるために、乾湿繰返し試 験をはさみながら、凍結融解試験を行った。乾湿繰返し は、凍結融解5サイクル毎に1度行った。乾燥過程は、 供試体の補修材面の試験水を除き、40度の乾燥炉で

24時間乾燥させた。また,乾燥炉に通気孔を設け,炉 内に空気の流れを生じさせた。湿潤過程は,供試体の 補修材面に試験水を張りなおし,6時間湿潤状態とし た。

2.5 硝酸銀発色試験

緩速凍結融解試験終了後,供試体断面の塩分浸透状況 の確認を行うため,供試体を鉄筋の配筋方向と平行に割 裂させた。割裂には,供試体の上面および下面の中心線 に沿って鋼棒を配置し,圧縮する方法を用いた。その後, 霧吹きで硝酸銀溶液を割裂面に噴霧し,スケールを用い て供試体上面からの塩分浸透深さを計測した。表面劣化 が著しいものについては,供試体下面から塩分浸透深さ を測り,上方からの測定に換算した。供試体が抉れてい る場合は,試験前の供試体上面を基準とした。割裂面全 体の発色状況を確認することで,供試体内部への塩分浸 透状況の確認を行った。

2.6 腐食面積率

硝酸銀発色試験終了後, チッピングハンマーを用いて 供試体を破砕し鉄筋をはつり出した。鉄筋の腐食面積率 算出のために,鉄筋の腐食箇所をOHP 用紙にトレース し,プラニメーターを用いて鉄筋の腐食面積を計測した。 得られた鉄筋の腐食面積より,鉄筋の腐食面積率を算出 した。鉄筋の腐食面積率の算出式を,式(1) に示す。

腐食面積率(%) =
$$\frac{腐食鉄筋表面積}{鉄筋表面積} \times 100$$
 (1)

3. 実験結果

3.1 緩速凍結融解試験

緩速凍結融解試験の結果を図-4 に示す。供試体別 に見てみると、NC と NM については、試験後 5 サイク ルでスケーリング劣化が確認された。その後もサイクル 数を重ねるにつれて加速度的に劣化は進み、50 サイクル 後には、供試体全面に渡って粗骨材が露出したものも確 認された。それに対し、PCM は 20 サイクルで僅かにス ケーリング劣化が確認されたものの、HPFRCC は全くス ケーリング劣化しなかった。PCM は、水セメント比が小

(a) ひび割れなし(b) ひび割れあり写真-1 ひび割れの有無による劣化形態

さいこと,ポリマーが水和空間を網目状に充填すること により供試体内部が緻密である。これより、供試体内の 水分量が少なく氷圧が小さくなったため、PCM は耐スケ ーリング性に優れていたと考えられる。HPFRCC が耐ス ケーリング性に優れていた原因としては、水セメント比 が小さく、供試体内部が緻密であることに加え、マトリ クス間の繊維が架橋し、ひび割れ幅の抑制や氷圧に抵抗 する力が働いたことが考えられる。また, HPFRCC はそ の特徴である複数微細ひび割れにより、供試体内部への 塩分の浸透が抑えられ,塩分濃度差による浸透圧が小さ くなったことで、スケーリング抵抗性が向上したと考え られる。この結果より, HPFRCC は乾湿繰返しおよび塩 水の影響を受けても、耐スケーリング性に優れているこ とが確認された。しかし本研究では、HPFRCC の空気量 による違いを確認することができなかったため、今後長 期間の試験を行うことが必要であると考えられる。NC と NM について試験水別に着目して見ると、水では 50 サイクル後もほとんどスケーリング劣化は確認さなか った。しかし、塩水では顕著なスケーリング劣化が確認 され、さらにひび割れのあるものは、供試体上面が抉ら れるまでスケーリング劣化が起きた。塩水で顕著な劣化 が起きる原因としては、供試体内に塩水が浸透すること によって浸透圧が生じることが考えられる。また、写真 -1 に示すように、ひび割れの有無で劣化の仕方が明確 に異なっていた。ひび割れがないものは、供試体上面か ら剥がれ落ちるように劣化していったのに対し、ひび割 れがあるものは、ひび割れ部に集中した水の膨張圧によ り、ひび割れが拡がるように劣化した。ひび割れにより 隅角部となった場所の角がスケーリングし、丸みを帯び

(b) PCM, ひび割れあり

(c) HPFRCC, ひび割れなし (d) HPFRCC, ひび割れあり
写真-2 凍結融解試験後の美観

		腐食面	積(cm ²)		腐食面積率(%)				
供試体名	湿	潤	乾	湿	湿	潤	乾湿		
	1	2	1	2	1	2	1	2	
NC	4.0	-	6.0	-	13.3	_	20.0	-	
NM	7.1	2.7	7.8	6.1	23.7	9.0	26.0	20.3	
PCM	3.3	4.4	4.0	0.9	11.0	14.7	13.3	3.0	
HPFRCC	2.0	2.9	2.9	3.2	6.7	9.7	9.7	10.7	

表-4 腐食面積率

た劣化が顕著であった。この現象は NC よりも NM で顕 著であった。NC の場合は,骨材が壁となり,スケーリ ング劣化を抑制していたものと考えられる。

NC と NM について乾湿の有無による違いに着目する と,湿潤状態のものの方が乾湿を入れたものの約2倍の スケーリング量が確認された。水を用いた米田らの研究 ^{a)}で,W/C=40%以上で乾湿繰返しを行うと,凍結融解抵 抗性が向上すると報告されており,塩水を用いた場合で も同様の結果となった。これより,乾湿繰返しによる表 面の劣化や供試体内部の残留塩といったネガティブ要 因よりも,供試体の飽和量の低下が耐スケーリング性に 大きく影響し,乾湿繰返しによって耐スケーリング性が 向上することが確認された。

凍結融解試験終了後,供試体の美観を目視により確認 した。NC,NMについては,顕著なスケーリングにより

大きく美観が損なわれていた。凍結融解試験後の PCM と HPFRCC 供試体を, 写真-2 に示す。PCM は, 表面か らのスケーリングにより供試体表面に凹凸が見られた。 さらに長期間の試験を行うことで,これは顕著になり, 美観は損なわれると考えられる。HPFRCC はスケーリン グが全く見受けられなかったため,今後も美観の維持が 可能だと考えられる。また,ひび割れを有している場合, PCM は大きなひび割れが入るが, HPFRCC ではひび割れ が分散され微細なひび割れとなるため, HPFRCC を補修 材として利用することは美観の維持に有用であるとい える。

3.2 硝酸銀発色試験

硝酸銀発色試験の結果を図-5に示す。ここで、SとC はひび割れなしとあり、WとDは湿潤と乾湿をそれぞれ

表している。ひび割れのあるものは、PCM の湿潤状態の もの1つと、HPFRCCを除き、全てが供試体下面まで浸 透していた。HPFRCC の塩分浸透深さが浅くなった理由 として、ひび割れ分散によりひび割れ幅が小さかったこ と、繊維の架橋により塩分浸透を抑制したことが考えら れる。これより, HPFRCC が NC, NM および PCM に比 べ、高い塩分浸透抑制効果を有するといえる。ひび割れ なしの塩分浸透深さを、供試体ごとに乾湿の有無でまと めて図-6に示す。NCに着目すると、乾湿の塩分浸透深 さが湿潤の2倍となっており、既往の研究⁴⁾と同様に、 乾湿繰返しにより塩分の浸透が速くなっていた。これは, 湿潤の場合は供試体が絶えず水分で飽和されているた め、新たな浸透が緩やかになるのに対し、乾湿繰返しを 与えることにより、浸透した水分が取り除かれ、新たな 浸透が促進されるためだと考えられる。また、乾湿繰返 しにより、供試体表面に微細なひび割れが生じると考え られ、これも塩分浸透を促進させる原因として考えられ る。供試体ごとに見ると、NC, NM, PCM, HPFRCCの 順に塩分浸透量が小さくなった。これは、塩分浸透深さ と同様に水セメント比によるセメントの緻密性が影響 していると考えられる。続いて、HPFRCC と HPFRCC 低 air について着目すると、HPFRCC よりも空気量が少な く、供試体の緻密性が高いと考えられる HPFRCC 低 air の塩分浸透が深くなった。空気量を5%とした、HPFRCC 低 air は予備試験より,引張応力下において,従来用い られている HPFRCC に比べて擬似ひずみ硬化や複数微 細ひび割れという特徴が弱くなることが確認された。こ れが、塩分浸透の抑制を阻害したと考えられる。

3.3 腐食面積率

鉄筋の腐食面積率の結果を表-4 に示す。ひび割れな しのものは腐食が確認されなかったため、この表から除 外している。供試体ごとに違いを見ると、HPFRCCの腐 食面積率が全体的に抑えられていた。塩分浸透深さと同 様に、微細なひび割れ幅と繊維の架橋により、塩分浸透 が抑制されたためと考えられる。次に乾湿の有無ごとに 見ると、値にばらつきがあり、明確な違いが見受けられ なかった。そこで、腐食面積率と補修材側のひび割れ幅 の関係に着目し、それをプロットした結果を、図-7に 示す。ひび割れ幅が 0.5mm 以下の場合には、ひび割れ幅 が大きくなるに従って,一次関数的に腐食面積率が増加 することが確認された。補修材側のひび割れ幅が大きく なるにつれて腐食面積率も大きくなるため、微細なひび 割れ幅の HPFRCC は鉄筋の腐食面積を抑制できると考 えられる。しかし、本研究ではデータ数が少ないため、 今後データ数を増やし検討する必要があるといえる。

本研究では、50×100×100mmの寸法で全断面を NC と した単一供試体, NM, PCM, HPFRCC を補修材として 用いた積層供試体を作製し,引張試験によりひび割れを 導入した。その後,乾湿繰返し試験をはさみながら緩速 凍結融解試験を行い,乾湿繰返しの有無および塩水の有 無がスケーリング劣化に及ぼす影響について検討した。 続いて供試体を割裂させ,その断面で硝酸銀発色試験を 行い,供試体内の塩分浸透状況を確認した。さらに,割 裂させた供試体から鉄筋をはつり出し,鉄筋の腐食面積 率を算出した。本研究においては,ひび割れを有する RC 部材を用いていることが特徴である。これより得られた 結果を以下に示す。

- (1) HPFRCC は乾湿繰返しおよび塩水の影響を受けても, スケーリング劣化は全く確認されず,耐スケーリン グ性に優れていることが確認された。
- (2) 塩水を用いた場合、スケーリング劣化が顕著となった。この理由としては、以前から言われているように⁴⁾、氷圧に加え塩水の浸透によって浸透圧が生じるためと考えられる。
- (3) ひび割れを有する RC 部材の場合,ひび割れの角か らのスケーリング劣化が顕著であった。
- (4) 乾湿繰返しによる,供試体内の飽和量の低下が NC と NM のスケーリング劣化を改善することが確認された。
- (5) HPFRCC が NC, NM および PCM に比べ, 高い塩分 浸透抑制効果を有していることが確認された。
- (6) HPFRCC は高い耐スケーリング性及び微細なひび割 れを有することから、美観の維持に優れているとい える。

参考文献

- 土木学会:複数微細ひび割れ型繊維補強セメント複合材料設計・施工指針(案),社団法人土木学会,pp. 資料38-資料45,2007
- 米田恭子・千歩修・長谷川拓哉:乾湿繰返しを加え た凍結融解試験による各種コンクリートの耐凍害 性,コンクリート工学年次論文集, Vol.30, No.1, pp.951-956, 2008
- 3) 原忠勝・月永洋一・庄谷征美:塩水の種類がコンク リート中の温度変化とスケーリング量に及ぼす影 響に関する実験的研究,日本コンクリート工学協会, 融雪剤によるコンクリート構造物の劣化研究委員 会報告書・論文集, pp.177-182, 1999.11
- 4) 桝田佳寛・友沢史紀・安田正雪・原謙治:コンクリ ート中への塩化物浸透速度に関する実験,コンクリ ート工学年次論文集, Vol.10, No.2, pp.493-498, 1988

4. まとめ