論文 PFBC 灰硬化体の耐硫酸性に対する微細構造の影響

堀口 至^{*1}·福本 直^{*2}·岩田 数典^{*3}·市坪 誠^{*4}

要旨:本研究では、加圧流動床複合発電方式の発電プラントから発生する PFBC 灰を主結合材として用いた PFBC 灰硬化体の耐硫酸性について、微細構造と関連付けて検討を行った。試験結果より、水結合材比 30% の PFBC 灰硬化体は同程度の強度を持つセメントコンクリートを比較すると、硫酸浸漬試験による硫酸浸食 の程度は小さいが硫酸浸透性はほぼ同じであることが分かった。微細構造については、PFBC 灰硬化体の方 が総細孔量は多いがその径は全体的に小さいことが分かった。また PFBC 灰の水和生成物として、硫酸劣化 に結びつく水酸化カルシウムの生成は確認されなかった。

キーワード: PFBC 灰,硫酸浸漬試験,細孔径分布, SEM, TG-DTA

1. はじめに

加圧流動床複合発電(PFBC: Pressurized Fluidized Bed Combustion)は、石炭の高効率利用を目指した火力発電方 式の一つである。PFBC 方式¹⁾は、脱硫のために石炭と 石灰石を混合して比較的低温(約 860°C)、高圧(約 1MPa) で燃焼させ、蒸気タービンとガスタービン発電を組み合 わせて発電を行っていることから、発電効率の向上や環 境負荷の改善が期待される。既に 10 年以上の運転実績 を有する信頼性の高い技術であり、日本では大崎(中国電 力)、苅田(九州電力)の2ケ所で商用機が運転を行ってい る。この PFBC 方式の発電プラントから発生する石炭灰 (PFBC 灰)は従来のフライアッシュとは異なり、CaO, SO3 成分量が多く SiO2成分量が少なく、不定形な粒子形状を 示しており、自硬性を有するという特徴を持つ。

著者らは PFBC 灰の自硬性に着目し、セメントを全く 使用せずに PFBC 灰を主結合材として用いた硬化体(以 下, PFBC 灰硬化体)について研究^{2),3),4)} を行っている。 これまでの研究結果より,養生温度60℃以上の高温水中 養生を行った水結合材比 30%の硬化体は、水セメント比 50%のセメントコンクリートに匹敵する強度を示すこと が分かっている。また、PFBC 灰硬化体はセメントを使 用しないため耐硫酸性が高く,硫酸水溶液浸漬前後の供 試体質量を調べると PFBC 灰硬化体の質量変化率はセメ ントコンクリートよりも小さい。しかし、PFBC 灰硬化 体の耐硫酸性についてはまだ不明な点も多い。詳細な試 験条件は異なるが、濃度 10%の硫酸に浸漬した PFBC 灰 硬化体の質量変化率を比較すると、水結合材比 50%の硬 化体の質量変化率はセメントコンクリートの約 3~ 14%²⁾ であるのに対して,水結合材比 30%の硬化体では 約 60~65%4 という結果を示した。すなわちこれらの結 果は、水結合材比が低いち密な構造の硬化体の方が、水 結合材比の高い疎な構造の硬化体よりも耐硫酸性が低い ということを表している。また、フェノールフタレイン 液により硫酸浸透状況を比較すると、セメントコンクリ ートは劣化表面と硫酸浸透フロントが同一であるが、 PFBC 灰硬化体は硫酸浸透フロントが劣化表面よりも内 側にあり、硬化体のち密性はセメントコンクリートより も低いことが示唆されている⁴⁾。

セメントコンクリートの一般的な硫酸劣化メカニズム は、セメント水和物である水酸化カルシウムと硫酸イオ ンとの反応により石膏が生成され、その石膏がセメント 化合物のC₃Aと反応することで膨張性のエトリンガイト を生成して破壊に至るとされている。ただし、セメント コンクリートの硫酸劣化はセメント水和物と硫酸イオン との反応だけによらず、硬化体の空隙構造にも影響を及 ぼされる。既往の研究⁵⁾によれば、高い濃度の硫酸溶液 に浸漬したセメント硬化体は、水セメント比が低い密実 なものほど侵食が激しくなると報告している。この現象 は、空隙構造が密な硬化体ほど硫酸による劣化生成物の 膨張圧を受容できずに、早期にはく落・欠損が生じるた めと説明している。

以上のことより、PFBC 灰硬化体の耐硫酸性を明らか にすることを目的として、濃度の異なる硫酸浸漬試験と ともに硬化体中の水和生成物や細孔構造といった微細構 造観察を行い、微細構造と関連付けて PFBC 灰硬化体の 耐硫酸性について検討を行った。

2. 試験概要

2.1 使用材料および配合

表-1に試験で使用した材料を示し,表-2に結合材であ

*1 呉工業高等専門学校 環境都市工学科助教 工博 (正会員)

```
*2 (株)エネルギア・エコ・マテリア 技術部
```

- *3 中国電力(株) エネルギア総合研究所土木担当副長 (正会員)
- *4 国立高等専門学校機構 本部事務局教授 工博 (正会員)

表-1 使用材料

記号	材料	物理的性質					
PFBC	PFBC 灰	密度=2.61g/cm ³ , 比表面積=4580cm ² /g					
BF	高炉スラグ微粉末	密度=2.91g/cm ³ ,比表面積=6230cm ² /g					
OPC	普通ポルトランドセメント	密度=3.16g/cm ³ ,比表面積=3340cm ² /g					
S	川砂	密度=2.54g/cm ³ , 吸水率=2.09%, 粗粒率=2.45					
G	砕石	密度=2.66g/cm ³ , 吸水率=1.17%, 粗粒率=6.72, 最大骨材寸法=20mm					
SP-U	真州能演水刘	超高強度コンクリート用,ポリカルボン酸系					
SP-S	同日11日100八月	一般・高強度コンクリート用,ポリカルボン酸系					
AE	AE 剤	一般コンクリート用					

	化学成分 (%)										
材料	ig. loss	SiO ₂	Al_2O_3	Fe ₂ O ₃	FeO	CaO	MgO	SO_3	Na ₂ O	K ₂ O	
PFBC	3.10	44.60	10.00	4.15		26.36	2.42	5.88	0.60	0.76	
BF	0.05	33.76	15.00		0.27	43.05	5.63		0.28	0.31	
OPC	1.89	20.83	5.03	2.98	-	64.11	1.38	2.15	0.27	0.45	

表-2 結合材の化学成分

表-3 配合表

	W/B	BF/B	単位量 (kg/m ³)					混和剤		圧縮強度
	(%)	(%)	W	PFBC	BF	S	G	タイプ	(B×%)	(N/mm ²)
30-BF30	30	30	175	408	175	682	848	SP-U	0.90	36.8
50-BF30	50	30	186	260	112	653	978	SP-S AE	0.30 0.60	10.7
PC	50	—	186	372(OPC)		744	949	AE	0.01	34.8

る PFBC 灰(PFBC),高炉スラグ微粉末(BF)および普通ポルトランドセメント(OPC)の化学成分の一例を示す。

表-3 に本研究で作製した供試体の配合表を示す。PF BC 灰硬化体の目標強度を7日で30N/mm²以上に設定し たため,既往の研究⁴⁾を参考にして水結合材比W/B=30%, 結合材に対する高炉スラグ微粉末の置換率 BF/B=30%の 硬化体30-BF30を試験に用いた。また比較用として,高 い耐硫酸性を示した W/B=50%, BF/B=30%の硬化体 50-BF30²⁾, 30-BF30 と同程度の圧縮強度を示す水セメント 比 50%のセメントコンクリート(PC)も作製した。

2.2 供試体作製方法

試料の練混ぜには公称容量 500のパン型ミキサを使用 した。50-BF30, PC は練混ぜ時間を 120 秒間としたが, 30-BF30 は高流動化したため 330 秒間と練混ぜ時間を長 くした。30-BF30 の 500mm フローは 13.6sec, フロー値 は 695mm を示し,通常の RC 構造物が対象であるランク 2 の自己充てん性(500mm フロー: 3~15sec, スランプフ ロー:600~700mm)を満足している。50-BF30 と PC のフ レッシュ性状は,50-BF30 がスランプ 5.0cm,空気量 4.4% であり, PC がスランプ 3.5cm,空気量 5.9%である。供 試体の締固めは,いずれの供試体も棒形振動機による振 動締固めを行った。

供試体の養生は、50-BF30 と PC は水温 20℃の標準水 中養生を行い、30-BF30 は水温 60℃の高温水中養生を行 った。高温水中養生は図-1 に示す養生水槽を用いた。養 生水槽は市販のポリペールにヒーターを取り付け、鑑賞

図-1 高温水中養生水槽

魚用のエアーポンプを用いて水を循環させている。また, ポリペールの周囲には断熱材を巻いて水槽内の保温性を 高めた。高温水中養生では供試体への熱衝撃の影響を考 慮して,20℃の水温から5℃/hrの昇温速度で60℃まで上 昇させ,所定の養生日数内は水温を保持した。養生日数 は PFBC 灰硬化体を7日, PC は28日と設定した。表-3 には養生終了後の PFBC 灰硬化体と PC の圧縮強度を併 記しているが, 30-BF30 が PC の圧縮強度と同程度であ るのに対して, 50-BF30 の圧縮強度は PC の約 30%とい うかなり低い値を示している。

2.3 硫酸浸漬試験

硫酸浸漬試験は,東京都下水道局がまとめたコンクリ ート改修技術マニュアルを参考にして行った。試験に用 いた硫酸水溶液濃度は高い濃度の 10%(pH=0.61)と 5% (pH=0.95),低い濃度の 0.1%(pH=1.88)の合計 3 水準とし た。供試体は φ 100×200mm の円柱供試体を用いた。試 験には、容量 450のポリプロピレン製容器を用い、1 つ の容器に対して 3 体の供試体を適当な間隔を開けて浸漬 した。供試体 1 体当たりの最低試験液量は供試体表面積 に 100mm を乗じた量、すなわち 7.90としたため、供試 体全体が試験液に完全に浸るように容器に約 270の硫酸 水溶液を用いた。写真-1 に試験状況を示すが、供試体を 浸漬した容器は、温度 20℃、相対湿度 60%の養生室内に 56 日間の浸漬期間中は静置した。また、硫酸水溶液は 1 週間毎に全量交換した。

耐硫酸性の評価は質量変化率と硫酸浸透深さを用い て行った。質量変化率は溶液交換時に供試体の質量を測 定し,以下の式(1)を用いて算出した。硫酸浸透深さは, 浸漬期間終了後の供試体をダイヤモンドカッターによ り中央部で切断し,切断面にフェノールフタレイン 1% 溶液を噴霧して赤く呈色した部分の直径を5箇所ノギス で測定し,以下の式(2)を用いて算出した。

$$R_W(t) = \frac{W(t) - W(0)}{W(0)} \times 100$$
(1)

$$Ds = \frac{D_{ini} - D_{red}}{2} \tag{2}$$

ここで、 $R_W(t)$ は硫酸浸漬t日後の質量変化率(%)、W(t)は硫酸浸漬t日後の質量(g)、 D_S は硫酸浸透深さ(mm)、 D_{ini} は硫酸浸漬前の供試体直径(mm)、 D_{red} は呈色部分の 直径(mm)を示す。

2.4 微細構造観察

微細構造観察は、細孔径分布測定、走査電子顕微鏡 (SEM)観察、示差熱天秤(TG-DTA)分析の3種類の試験を 30-BF30、50-BF30、PC に対して行った。細孔径分布測 定は PFBC 灰硬化体の細孔構造を、SEM 観察、TG-DTA 分析は硬化体の水和生成物を分析するために行った。な お SEM 観察のみ、PFBC 灰硬化体および PC の硫酸によ る劣化生成物の分析も行った。

細孔径分布測定では、コンクリート供試体練混ぜ後の フレッシュ状態の試料からウェットスクリーニングによ り作製したモルタル供試体を用い、その他の試験では新 たにペースト供試体を作製した。供試体はモルタル、ペ ーストともにφ75×150mmの円柱供試体とした。モルタ ル供試体、ペースト供試体ともにコンクリート供試体と 同一の養生、すなわち 30-BF30 は水温 60℃の高温水中養 生を7日間行い、50-BF30 と PC は水温 20℃の標準水中 養生を 50-BF30 は 7 日間、PC は 28 日間行った。

写真-1 硫酸浸漬試験

写真-2 SEM 観察用供試体

細孔径分布測定, TG-DTA 分析に用いる供試体は養生 終了後に万能試験機で破壊し, モルタル試料は 7mm 程 度, ペースト試料は 5mm 程度になるようニッパーで砕 いた。砕いた試料は水和を停止させるためにアセトン中 に約 12 時間浸漬し, 24 時間真空脱気して試験までデシ ケーター内で保存した。なお, TG-DTA 分析に使用した 試料は測定前にメノウ乳鉢で粉砕している。

SEM 観察に使用した供試体は,養生終了後に濃度 5% の硫酸水溶液に 24 日間浸漬した。硫酸浸漬期間終了後の 供試体をダイヤモンドカッターで切断して,硫酸劣化し た供試体表面部分と硫酸浸漬の影響を受けていない供試 体中央部から試料を採取し,それぞれ劣化部と健全部の 試料とした。試料の作製方法は前述の方法と同様である。 写真-2 に硫酸浸漬後のペースト供試体を示すが,表面近 くの白色に変化した部分が劣化部である。なお,供試体 中にひび割れが見られるが,このひび割れは試料採取後 に生じたひび割れであり,硫酸浸漬中に生じたものでは ない。SEM 観察はカッター切断面に近い部分は避けて破 断面を観察面として,試料に導電性を持たせるために白 金ーパラジウムを蒸着した。

3. 試験結果および考察

3.1 硫酸浸漬試験結果

写真-3に濃度10,0.1%の硫酸に56日間浸漬した30-BF 30,50-BF30,PCの外観を示す。ただし、写真は供試体 打設面周辺の劣化状況を示している。写真より、各供試 体とも硫酸濃度が高くなるにつれて、骨材の剥き出した

硫酸による浸食状態が激しくなることが分かる。また, 各硫酸濃度における供試体の劣化の程度は,濃度10%の 硫酸浸漬ではPCの劣化が最も著しく,次いで30-BF30, 50-BF30という順序で硫酸浸食が穏やかになる。濃度5% の試験結果も10%と同様の傾向を示した。一方,濃度 0.1%ではPCの劣化が進んでいるのは同じであるが, PFBC 灰硬化体を比較すると逆に50-BF30の方が30-BF 30よりも若干劣化が進んでいる。

図-2 に濃度 10, 5, 0.1%の硫酸に浸漬した 30-BF30, 50-BF30, PC の質量変化率の経時変化を示す。ただし, 質量変化率には3体の供試体の平均値である。図より, 質量変化率の経時変化は写真-3の供試体劣化状況と同様に, 濃度 10%と 5%の硫酸浸漬では PC, 30-BF30, 50-BF30 という順序で質量変化率が小さくなる。一方, 濃度 0.1%の硫酸浸漬では PC と 50-BF30 が同程度の質量変化率で, 30-BF30 の質量変化率が最も小さい。

写真-4に濃度10,0.1%の硫酸に56日間浸漬した30-BF 30,50-BF30,PCの硫酸浸透状況を示す。ただし、写真 中の矢印は黒矢印が劣化表面を示し、白矢印がフェノー

ルフタレイン液により赤紫色に呈色する部分としない部 分の境界線,すなわち硫酸浸透フロントを示す。写真よ り,硫酸浸漬後の PC の劣化表面と硫酸浸透フロントが 同一であるのに対して, PFBC 灰硬化体は劣化表面より

り、硫酸浸漬後の PC の劣化表面と硫酸浸透フロントが 同一であるのに対して、PFBC 灰硬化体は劣化表面より 硫酸浸透フロントが幾分内側にあり、その傾向は 30-BF 30よりも50-BF30の方が顕著であることが分かる。なお、 濃度 5%の試験でも同様の傾向を示している。

図-3 に濃度 10, 5, 0.1%の硫酸に浸漬した 30-BF30, 50-BF30, PC の硫酸浸透深さの経時変化を示す。ただし, 硫酸浸透深さは 3 体の供試体の平均値である。硫酸浸透 深さは, 硫酸浸食が激しいほど硫酸浸透フロントに粗骨 材がかかり,式(2)中の呈色部分の直径 *D_{red}*はバラつきが 大きくなる。そのため大まかな見方しかできないが, 濃度 10%では PC の硫酸浸透深さが最も大きく, 濃度 5%の 硫酸浸漬では PFBC 灰硬化体と PC はほぼ同程度の硫酸 浸透深さであることが分かる。一方, 濃度 0.1%では PC と 30-BF30 が同程度の硫酸浸透深さで、50-BF30 の硫酸 浸透深さが最も大きい。

以上の試験結果より, 硫酸浸漬試験結果は硫酸濃度の

写真-5 SEM 観察結果(健全部)

違いにより異なる傾向を示した。高い濃度の試験では, PCの硫酸劣化が PFBC 灰硬化体よりも激しく,PCの約 30%の強度しか持たない 50-BF30 が最も硫酸による浸食 を受けていなかった。ただし,硫酸浸透性は 30-BF30, 50-BF30 はほぼ同じである。一方,低い濃度の試験では 一見 PC の硫酸劣化が進んでいるように思われるが,硫 酸浸透は 50-BF30 が最も大きかった。PC と同程度の強 度を持つ 30-BF30 が最も硫酸浸食を受けていなかったが, 硫酸浸透性は PC とほぼ同じであった。

3.2 微細構造観察結果

図-4に30-BF30,50-BF30,PCの細孔径分布測定結果 を示す。図より,総細孔量はPCよりもPFBC 灰硬化体 の方が多く,50-BF30 が最も総細孔量が多い。また,細 孔径分布を比較すると,50-BF30,PC,30-BF30 の順に 細孔径が小さい径にシフトしていることが分かる。すな わち,強度の低い50-BF30 が最もポーラスな構造を持ち, PCと同程度の強度を持つ30-BF30は,PCよりも細孔量 は多いがその径は全体的に小さい。この結果より,硫酸 浸漬試験で50-BF30 の硫酸浸食が最も小さかったことが 説明される。すなわち,50-BF30 の疎な構造が硫酸によ る劣化生成物の膨張圧を吸収し,劣化部のはく離が抑え られたと考えられる。

写真-6 SEM 観察結果(劣化部)

写真-5に30-BF30, PCのSEM観察により得られた, 硫酸浸漬の影響を受けていない健全部の二次電子像を示 す。PCの観察結果から, PCの組織は通常確認される水 酸化カルシウム(Ca(OH₂))やカルシウムシリケート水和 物(CSH(PC))を主体とした組織であることが分かった。一 方,PFBC 灰硬化体は未反応のPFBC 灰,またはスラグ 由来の鉱物が所々に露出し,その隙間はカルシウムシリ ケート水和物と思われる生成物(CSH(PF))で覆われてい たが,水酸化カルシウムは確認されなかった。PCとPFBC 灰硬化体のカルシウムシリケート水和物を,SEM に付属 しているエネルギー分散型X線分析装置(EDS)により成 分分析したところ,硬化体のCSH(PF)はPCとは異なり, カルシウムやケイ素の他にアルミニウムや硫黄を含んで いることが分かった。W/Bの違いによるPFBC 灰硬化体 の組織の変化はほとんど見られなかった。

図-5 に 30-BF30, 50-BF30, PC の TG-DTA 分析により 得られた示差熱分析(DTA)曲線を示す。図より, PFBC 灰 硬化体同士の DTA 曲線はほぼ同じであったが, PC と比 較すると,その傾向は異なることが分かる。DTA 曲線の 下に凸のピークは吸熱を伴う重量減少を表しているが, 一般的なセメントペーストの場合,室温~200℃付近のピ ークは付着水やカルシウムシリケート水和物,エトリン ガイトなどの水和物の脱水を,450~500℃付近のピーク は水酸化カルシウムの脱水に起因する。図より,室温~ 200℃付近のピークは PFBC 灰硬化体,PC ともに現れて いるが,450~500℃付近のピークは PC にしか現れてい ないことが分かる。すなわち,SEM 観察結果と同様に, TG-DTA 分析結果からも PFBC 灰硬化からは水酸化カル シウムが検出されなかった。

写真-6 に 30-BF30, PC の SEM 観察により得られた硫 酸浸漬の影響を受けた劣化部の二次電子像を示す。PC の観察結果から、1µmを超える二水石膏の粒子(CS)と、 石膏とシリカゲルの集合組織である 1μm 以下の粒子 (SH(PC))で覆われていることが分かった。これは、硫酸 浸漬によってセメント水和物の水酸化カルシウムが二水 石膏に変化し、カルシウムシリケート水和物が石膏とシ リカゲルに変化したものと推察される。一方, PFBC 灰 硬化体もPCと同様に1µmを超える二水石膏の粒子と、 石膏とシリカゲルの集合組織と思われる 1μm 以下の粒 子(SH(PF))で覆われていた。1 µ m 以下の粒子は PFBC 灰 水和物のカルシウムシリケート水和物が変化したものと 推察される。しかし二水石膏については、SEM 観察や TG-DTA 分析結果から分かるように PFBC 灰硬化体から は水和物として水酸化カルシウムが確認されていないた め、何が二水石膏に変化したかは不明である。

3.3 PFBC 灰硬化体の耐硫酸性に関する一考察

セメントコンクリートは、主にセメント水和物である 水酸化カルシウムと硫酸イオンとの反応を起因として硫 酸劣化が生じる。一方、PFBC 灰硬化体は水酸化カルシ ウムの生成が確認されていないため、劣化の主体となる ものが不明である。ここで、PFBC 灰硬化体に水酸化カ ルシウムが生成されないことから、セメントコンクリー トよりも硫酸による劣化生成物の膨張圧が低いと仮定す ると、セメントコンクリートと同等の強度を持つ硬化体 の硫酸浸食の程度が低いことは説明できる。ただし、硫 酸浸透性はセメントコンクリートとほぼ同じであること から、本研究結果より PFBC 灰硬化体の耐硫酸性がセメ ントコンクリートよりも劣るものではないが、優れてい るという結論は得られなかった。

本研究の硫酸浸漬試験からは PFBC 灰硬化体の耐硫酸 性が優れているという結論は得られなかったが、その原 因の1つとして、硫酸濃度や浸漬期間などの試験条件の 設定が挙げられる。高い硫酸濃度の試験は促進試験であ るため短い試験期間で硫酸劣化が生じるが、実際の環境 を模した低い濃度の試験と反対の結果が出るため、蔵重 ら⁵⁾ は促進試験については議論が必要であると述べて いる。本研究では低い濃度での硫酸浸漬試験も行ったが、 試験期間が 56 日と短かったため、最終的な 30-BF30 の 質量変化率は約-1%、硫酸浸透深さは約 1.5mm と十分な 劣化を生じさせるには至らなかった。以上より、PFBC 灰硬化体の耐硫酸性については、実際の下水道施設への 曝露試験や長期間に及ぶ低濃度硫酸試験などにより評価 する必要がある。

4. まとめ

以下に本研究により得られた知見を示す。

- (1) 高い濃度の硫酸浸漬試験では、セメントコンクリート(PC)の硫酸劣化が激しく、W/B=50%の PFBC 灰硬化体 50-BF30 が最も硫酸浸食を受けていなかった。ただし、硫酸浸透性は W/B=30%の硬化体 30-BF30 と 50-BF 30 はほぼ同じである。
- (2) 低い濃度の硫酸浸漬試験では、50-BF30 の硫酸浸透が 最も大きかった。30-BF30 が最も硫酸浸食を受けてい なかったが、硫酸浸透性は PC とほぼ同じであった。
- (3) 細孔径分布測定結果より,総細孔量は 50-BF30, 30-BF
 30, PC の順に小さくなるが,細孔径は 50-BF30, PC,
 30-BF30 の順に小さい径へシフトしている。
- (4) SEM 観察, TG-DTA 分析結果より, PFBC 灰硬化体の 水和物として水酸化カルシウムは確認されなかった。
- (5) 硫酸浸食の影響を受けた PFBC 灰硬化体の劣化部の SEM 観察結果より、二水石膏の粒子と、石膏とシリカ ゲルの集合組織と思われる粒子が確認された。

謝辞:本研究を進めるにあたり,株式会社フローリック から混和剤を提供して頂きました。また一部の微細構造 観察は,株式会社太平洋コンサルタントに実施して頂き ました。実験を行う際には,呉高専環境都市工学科の友 村圭祐君,中土井佑輔君,島津邦彦君,竹田直弥君,田 本達也君,濱本光蔵君に多大なご協力を頂きました。こ こに深く感謝の意を表します。

参考文献

- 山田宏彰,三沢信博,高井真琴:石炭燃焼発電技術, 日本エネルギー学会誌, Vol.82, No.11, pp.822-829, 2003
- 2) 堀口至,市坪誠,田中雅章:PFBC 灰を結合材として 用いた硬化体の圧縮強度および耐硫酸性,セメントコ ンクリート論文集, No.61, pp.572-578, 2007
- 田中雅章, 堀口至, 市坪誠: PFBC 灰を結合材として 用いた硬化体の収縮特性, 第61 回セメント技術大会講 演要旨, pp.228-229, 2007
- 4) 堀口至,市坪誠,田中雅章,福本直:耐硫酸性を有する PFBC 灰硬化体の圧縮強度,コンクリート工学年次 論文集, Vol.30, No.2, pp.529-534, 2008
- 5) 蔵重勲, 魚本健人: コンクリート中の水和物および微 細構造が耐硫酸性に及ぼす影響, コンクリート工学年 次論文集, Vol.23, No.2, pp.469-474, 2001