論文 多数回繰り返し変形を受けるスラブ付き RC 梁部材の実験研究

濱田 真^{*1}·斉藤 大樹^{*2}·向井 智久^{*2}·薬研地 彰^{*3}

要旨:長周期地震動がもたらす多数回の大振幅揺れを受ける鉄筋コンクリート造超高層建物の構造性能を把 握するために,横補強筋比と載荷履歴の繰り返し回数を実験因子とした鉄筋コンクリートスラブ付き梁部材 の正負交番曲げせん断実験を行った。実験の結果,実建物相当のせん断余裕度があれば同一部材角で多数回 (10回)繰り返し変形を与えても部材角 1/25 まではほとんど耐力低下を示さなかった。一方,横補強筋比を減 らしてせん断余裕度を小さくした場合は,耐力低下を示すとともに繰り返しにより徐々に履歴面積が小さく なり,多数回繰り返しによる影響が見られた。特に引張主筋量が多い梁下端圧縮でその傾向が顕著であった。 キーワード:長周期地震動,正負交番多数回繰り返し,スラブ付き RC 梁,せん断余裕度,耐力低下

1. はじめに

近い将来に発生するとされている東海, 東南海, 南海 地震などの海溝型巨大地震が大都市を襲うと,数秒から 十秒程度の周期で大きな揺れが継続する「長周期地震 動」で被害が出るとの可能性が指摘されている。大都市 圏では数多くの超高層建物や免震建物が建設されてお り、その固有周期は2~6秒と長いので長周期地震動に遭 遇すると,多数回大振幅揺れを受ける可能性がある。鉄 筋コンクリート(以下, RC)造は遮音性や断熱性に優れる ことから居住性が良いため,数多くの超高層の集合住宅 に採用されてきたが、これらの建物は 2~3 秒の周期帯で 設計されたものが多く、多数回大振幅揺れを考慮した設 計はなされなかった。一方、長周期地震動を考慮したシ ミュレーション解析¹⁾によると超高層 RC 建物最上階で は振幅が 1m を超える揺れが数分間続くことが予想され ており、多数回繰り返しにより RC 部材に損傷が累積さ れることが指摘されている。

多数回繰り返し載荷の実験研究としては、「RC 短柱の 崩壊に関する総合研究」²⁾があり,主筋降伏後の変形域 で繰り返しを合計で 50 サイクル行われたものがある。 その他の研究³⁾もいくつかあるが,これらの結果を総括 すると,最大耐力までは繰り返し回数や載荷履歴による 構造性能への影響は少なく,最大耐力以降は繰り返しに よる付着劣化が指摘されている。また衣笠ら⁴⁾は曲げ降 伏ヒンジの破壊性状を検討し,繰り返しによりヒンジ領 域のせん断変形成分が徐々に増加して耐力低下を示す 「正負繰り返し履歴破壊」の提案を行っている。

そこで本研究では,超高層 RC 建物が多数回大振幅揺 れを受けた場合の構造性能を把握するため,横補強筋比 と載荷履歴の繰り返し回数を変えたスラブ付き RC 梁部 材の正負交番繰り返し曲げせん断実験を実施した。

表一1 試験体一覧および諸元						
試験体名		B1N	B1L	B2N	B2L	
設計基準強	隹度		42N/mm ²			
せん断スノ	ペン(比)	a=1275mm (a/D=2.83)				
梁断面		b×D=275mm×450mm				
スラブ 厚さと幅		厚さ:100mm, 片側出幅:300mm				
軸方向筋		片側:3-D6 (SD295A)				
主筋 上端筋(比)		4+2-D19 (1.62%)				
下端筋(比)		4-D19 (1.03%)				
	材種		SD	490		
横補強筋	径·間隔	4-D6@75		4-D6@150		
	横補強筋比	0.62%		0.31%		
	材種	UHY685				
載荷履歴		ノーマル	長周期	ノーマル	長周期	
負載荷 正載荷 <i>正載荷</i> <i>正載荷</i> <i>正載荷</i> <i>「上端筋</i> <i>4+2-D19(SD490)</i> <i>コンクリート打設方向</i> <i>コンクリート打設方向</i> <i>「上端筋</i> <i>4+2-D19(SD490)</i> <i>コンクリート打設方向</i> <i>「山口の</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>100</i> <i>1</i>						

2. 実験概要

2.1 試験体

表-1に試験体一覧および諸元を,図-1に試験体形 状および配筋の例を示す。表-2に試験体に使用した材 料の試験結果を示す。

試験体はスパン6mの5×5スパン2軸対称平面の地上 36 階建て超高層 RC 造の試設計結果から17 階床梁をモ デル化した縮尺1/2のスラブ付き梁4体である。本研究

*1 (株) 熊谷組 技術研究所 建築構造研究グループ 工修 (正会員) *2 独立行政法人 建築研究所 国際地震工学センター 工博 (正会員) *3 ハザマ 技術・環境本部 技術研究所 工修 (正会員) の目的は、実建物における梁部材が長周期地震動により 多数回繰り返し変形を受けた場合の性状を確認するこ とであるので、梁曲げ降伏先行となるように設計した。

梁断面は b×D=275×450mm で,これに厚さ 100mm, 出幅 300mm のスラブが梁両側に取り付いたT形梁とし た。せん断スパンは a=1275mm(せん断スパン比 a/D=2.83)とした。主筋は D19(SD490)を用い,上端に2 段,下端に1段で配筋した。横補強筋には 4-D6(UHY685) を用い,B1 は実建物相当の梁で横補強筋比が 0.62%であ る。B2はB1に対して横補強筋比を半減した 0.31%とし, 横補強筋比による影響を比較するものである。なお,各 試験体のせん断余裕度については 3.1 で詳しく述べる。 試験体名末尾の文字は載荷履歴を表しており,Nはノー マル履歴,L は長周期履歴を載荷したもので,載荷履歴 による影響を比較するものである。試験体のコンクリー ト打設は,実建物と同様にスラブ面から行った。

2.2 加力方法と載荷履歴

加力は**写真-1**に示すように梁を反力床に立てた状態の片持ち梁形式で正負交番繰り返し変形(*δ*)を 1000kN油圧ジャッキで与えた。スラブ(上端)圧縮となる 方向を正載荷(写真でジャッキを出す方向),スラブ引張 (下端圧縮)となる方向を負載荷(写真でジャッキを引く 方向)とした。梁にねじれが生じないように加力方向に 対してパンタグラフで面外拘束を行った。なお,油圧ジ ャッキの自重はカウンターウェイトでキャンセルした。

図-2にノーマルと長周期の載荷履歴を示す。載荷は 変形制御の部材角 R(= δ/a)漸増形式で実施した。長周期 履歴の繰り返し回数を決めるには、地震時のランダム応 答を定振幅の振動に置き換えることで総入力エネルギ ーを消費する等価な繰り返し数を算定する手法⁵⁾を用い た。これによると、長周期地震動における地震時繰り返 し回数が固有周期 2 秒以上で 5~15 回となった。そこで 長周期履歴としては弾性時の R=1/200,主筋降伏前後の R=1/100,降伏後の R=1/50 と大変形域の R=1/33 で各々10 回(多数回)ずつ繰り返し、その他の R=1/400,1/25,1/20 が 各々2 回ずつの合計 46 サイクルとした。ノーマル履歴は 各部材角で各々2 回ずつの合計 14 サイクルとした。

計測は梁の全体変形,梁の軸方向変形などを変位計で, 主筋と横補強筋のひずみをゲージで測定した。梁せん断 力はジャッキに内蔵されたロードセルにより計測した。

3. 実験結果および検討

図-3に各試験体のせん断力(*Q*)-部材角(*R*)関係と最 終破壊状況の写真を,表-3に実験結果と計算値一覧を 示す。

3.1 実験経過

各試験体とも R=1/400 のループで曲げひび割れが発生

表-2	使用材料の	試験結果
~ -		1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-

試験体名	<mark>圧縮強度: σ_B 「N/mm²]</mark>	ヤング係数 「N/mm ²]	割裂強度 「N/mm ²]	
B1N	52.4	3.89×10^4	3.6	
B1L	49.4	3.37×10^{4}	3.4	
B2N	53.8	3.42×10^{4}	3.8	
B2L	53.0	3.12×10^{4}	4.1	
径·材種	<mark>降伏強度: σ</mark> , [N/mm ²]	ヤング係数 [N/mm ²]	引張強度 [N/mm ²]	
D19 (SD490)	546	1.91×10^{5}	723	
D6 (UHY685)	763*	2.00×10^{5}	1000	
D6 (SD295A)	355*	1.98×10^{5}	520	

<u>*0.2%オフセット法</u>

し、負載荷ではその直後にスラブ筋が降伏した。次の R=1/200 のループでせん断ひび割れが発生した。主筋降 伏は、正載荷 R=+1/100 の直前で下端筋が降伏し剛性が少 し低下し、負載荷 R=-1/50 に向かう途中の R=-1/100 過ぎ で上1 段筋が降伏、R=-1/75 近傍で上2 段筋が降伏し剛 性が大きく低下した。最大強度の発現は、正載荷は全て R=+1/50 で、負載荷は B1N が R=-1/25 でその他は R=-1/33 であった。最大強度発現以降のループにおいて、正載荷 では耐力低下をほとんど示していないが、負載荷は横補 強筋比が小さい B2 が耐力低下を示した。なお、いずれ の試験体とも顕著な付着ひび割れは観測されなかった。

ノーマル履歴と長周期履歴(図-3の左右)を比較す ると B1,B2 とも繰り返し回数の違いによる Q-R 関係の 相違はほとんど見られなかった。横補強筋比が異なる B1,B2(図-3の上下)を比較する。ノーマル履歴は、負 載荷の R=-1/25 の1回目まではほとんど同じ Q-R 関係 を示しているが、B2N は R=-1/20 で大きく耐力が低下し

た。また B1 に対して B2 の Q=0 付近でのスリップ傾向 が大変形の R=1/25 と 1/20 ループで大きくなっていた。 長周期履歴は、負載荷の R=-1/33 のループまではほとん ど同じQ-R 関係を示しているが, B2N は R=-1/25 で大 きく耐力が低下し、ノーマル履歴と同様に Q=0 付近での スリップ傾向が大きくなっていた。この B2 の負載荷の 耐力低下は、最終破壊状況の写真から分かるように横補 強筋によるコンクリートの拘束が B1 に比べて小さいた め圧縮部コンクリートが剥落するとともに、下端主筋が 座屈したためである。

曲げ終局強度は略算式(1)⁶を用いてスラブ筋を考慮し て算出した。計算値に対する最大強度の比(比較値)は, 正載荷が平均で1.26, 負載荷が平均で1.11 であり, スラ ブコンクリートが圧縮の場合の方が大きくなっていた。

$${}_{c}Q_{mu} = \frac{0.9\Sigma(a_{t} \cdot \sigma_{y} \cdot d)}{a}$$
(1)

ここに、 a_t は引張鉄筋の断面積、 σ_v は引張鉄筋の降伏強 度, d は梁の有効せいである。

せん断終局強度は荒川式(2)6を用いて下記の3種類に ついて算出した。

$${}_{c}Q_{suN} = \left\{\frac{K \cdot p_{le}^{0.23}(F_{c} + 18)}{M/(Q \cdot d) + 0.12} + 0.85\sqrt{p_{we} \cdot \sigma_{wy}}\right\} b_{e} \cdot j \qquad (2)$$

①N=1(下限式) : K=0.053, b_e=b

②N=2(平均式) : K=0.068, b_e=b

③*N*=3 (HFW 式): *K*=0.053, $b_e = \min(\Sigma A_G/D, 1.2b)$ ここに、 ΣA_G は床スラブを加えた梁の断面積、 p_{te} は b_e に対する引張鉄筋比, p_{we} は b_e に対する横補強筋比, F_c はコンクリート強度, M/(Q·d)はせん断スパン比, ow は横補強筋の降伏強度,そして j は梁の応力中心間距離 である。図-4に上記3種類のせん断終局強度について 計算値せん断余裕度($_{c}Q_{su}/_{c}Q_{mu}$)の値を試験体毎にまとめ

	試験体名			B1N	B1L	B2N	B2L
実験値	軸方向鉄筋 降伏強度	下筋	_e Q _y +	201	209	199	206
		上1段	_e Q _{y1} -	-270	-273	-265	-257
		上2段	_e Q _{y2} -	-280	-281	-281	-287
		スラブ	_e Q _{ys} –	-85	-98	-47	-113
	最大強度	正	$_{\rm e} {\rm Q}_{\rm mu}$ +	226	224	221	230
		負	_e Q _{mu} -	-317	-309	-303	-299
	日初廿名	正	_e R _m +	2.02	2.01	2.02	2.00
	IN IN IN IS	負	_e R _m −	-4.01	-3.00	-3.04	-3.02
	破壊モード			曲げ破壊			
꽦	曲げ終局強 度	正	_c Q _{mu} +	179	179	179	179
		負	_c Q _{mu} -	-276	-276	-276	-276
	比較値	正	$_{\rm e} {\sf Q}_{\rm mu}$	1.26	1.25	1.23	1.28
		負	_c Q _{mu}	1.15	1.12	1.10	1.08
	せん断終局 強度①	正	_c Q _{su1} +	300	295	249	247
		負	_c Q _{su1} −	-299	-293	-250	-249
	せん断終局	正	_c Q _{su2} +	333	327	283	281
算	強度②	負	_c Q _{su2} -	-334	-327	-286	-284
値	せん断終局 強度③	正	_c Q _{su3} +	335	329	279	278
		負	_c Q _{su3} −	-334	-328	-281	-279
	無次元化せ ん断応力度	正	<u>c</u> τ *1	0.035	0.037	0.034	0.035
		負	$\sigma_{\rm B}^{*2}$	0.053	0.056	0.051	0.052
	設計用付着応力度		τ f	2.69	2.69	2.69	2.69
	付着信頼強度		$\tau_{\rm bu}$	4.02	3.92	3.08	3.05
	付着余裕度		au _{bu} / $ au$ _f	1.49	1.46	1.14	1.13

実験結果と計算値一覧

表-3

*2:コンクリート 圧縮強度 [N/mm²] 単位:Q[kN], R[×1/100rad.], τ[N/mm²]

たものを示す。せん断余裕度の値は①の下限式で B2 が 1.0を下回っているが、その他は全て1.0を上回っている。 また、②の平均式と③の HFW 式はせん断余裕度の値が ほとんど同じであるのが分かる。

無次元化せん断応力度($c \tau_{mu} \sigma_B$)の値を見ると,正載荷 は 0.04 以下で比較的余裕のある数値となっているが,負 載荷では 0.05 以上で梁部材としては厳しい値となって いた。上端1段筋について靭性指針⁷⁾による付着の検定 を行った。設計用付着応力度は主筋の上限強度を 1.12 σ_y として計算したが,付着余裕度(τ_{bu} / τ_f)は B1 が 1.5 程度, B2 が 1.1 程度となり計算上は付着破壊を生じない結果と なっていた。

以上, *Q*-*R* 関係で *R*=±1/33 のループ途中までは顕著 な耐力低下を示していないこと,実験値と計算値の比較 で正負載荷とも *Q*_{mu}に達していることなどを鑑み,試験 体の破壊モードは全試験体とも曲げ破壊と判断した。

3.2 耐力低下

図-5にB1,B2の各サイクルピーク時せん断力の推移 を示す。なお、負載荷時のせん断力は絶対値で図示した。 B1,B2とも R=1/200までは正負載荷ともほぼ同じ耐力で あり、弾性挙動であるのが分かる。R=1/100以降では上 下主筋量の違いによる正負の曲げ強度の差が表れてい る。長周期履歴において10回の繰り返しを受けた後に 次の新たなRに移る際のせん断力をノーマル履歴のもの と比較する。正載荷ではB1,B2ともほぼ同じ耐力に復帰 しているのが、負載荷ではB1はほぼ復帰しているのに 対し、横補強筋比が小さいB2はR=1/33から1/25に移る 際 Q=60kN以上の差が生じ、多数回繰り返しによる影響 がみられた。一方 B1L,B2Lとも正載荷ではR=+1/100か ら+1/20まで cQmu+を上回っているのに対して、負載荷で は R=-1/50の途中から cQmu-を下回っており、多数回繰 り返しにより徐々に耐力低下しているのが分かる。

図-6に長周期履歴 B1L,B2L の耐力低下率(各 R の 1 サイクル目のピークせん断力で基準化)の推移を示す。 先ず特徴的なのは R=+1/50 の 1 サイクル目に対して 2 サ イクル目の耐力が 0.85 程度に低下していることである。 この現象は図-5 から分かるようにノーマル履歴の B1N,B2N でも現れており,更に全ての試験体でこの R=+1/50 の 1 サイクル目が実験値最大強度の発現となっ ていた。10 回の繰り返し変形を与えた R では繰り返しに より徐々に耐力が低下しているのが分かる。負載荷の 10 回目の低下率を見ると, R=1/200 で0.89, R=1/100 で0.92, R=1/50 で 0.93 までしか低下していないが, R =1/33 では B1 が 0.87 に B2 が 0.78 まで低下しており, R=1/33 での 耐力低下率が若干大きいのが分かる。

3.3 等価粘性減衰定数

図-7に全試験体の等価粘性減衰定数(heq)の推移を示

す。R=1/33 までの範囲では各試験体の h_{eq}の推移にほとんど相違は見られない。10 回繰り返しを与えた R での h_{eq}の推移に着目すると, R=1/200 は 2 サイクル目で, R=1/100 は 3 サイクル目で, R=1/50 は 9 サイクル目で一 定値(X 軸に平行)に落ち着く様子があるが, R=1/33 では 一定値に落ち着く様子は無く, 10 回以上の繰り返し与え た場合は, h_{eq} が継続的に減少していくものと思われる。 したがって,本実験のように梁下端圧縮で R=1/33 のよう な大変形域での多数回(10 回)繰り返し変形を受ける場 合は, 耐力低下が生じるとともに履歴面積が小さくなり, 繰り返しによる影響が生じるものと予想される。

3.4 梁軸ひずみ

図-8にピーク時の梁軸ひずみの推移を示す。梁の軸 変形は梁せい中心位置でせん断スパン長さに対する伸 縮量を計測したのでひずみ換算して表示した。先ず正載 荷について見ると,繰り返しによる軸ひずみが増加して いるが,実験因子とした横補強筋比あるいは載荷履歴に よる顕著な差は見られない。最終の*R=+1/20*では横補強 筋比が大きいB1の方がB2よりも軸ひずみは大きくなっ ていた。次に負載荷を見ると,B1Nは正載荷と同じよう に軸ひずみが最後まで増加し続けているが,それ以外の 試験体は途中から軸ひずみが減少に転じている。これは 前述したように負載荷は梁下端コンクリートの圧縮破 壊が進行し主筋が座屈をしたためであり,横補強筋が少 ないほど,繰り返し回数が多いほど軸ひずみが反転する *R*が小さく(開始点が早く)なっていた。

3.5 主筋と横補強筋のひずみ分布

図-9に長周期履歴の B1L,B2L の上端1段筋と横補 強筋のひずみ分布を上端が引張となる負載荷時 10 回繰 り返しを与えた R の 1 回目と 10 回目について示す。先 ず主筋のひずみ分布をみると,B1,B2 とも R=1/200,1/100 の 1 回目と 10 回目の分布には大きな変化はなく多数回 繰り返しによる付着劣化は進んでいないと考えられる。 R=1/50 では M4,M3 で降伏しており,ヒンジ領域(梁せ い:D)の範囲のひずみが大きくなっており付着が消失し ていると考えられる。スタブ内の M5 と載荷点よりの M1 では大きなひずみの進行は少なく良好な定着性能を 発揮している。なお、ノーマル履歴のひずみ分布も長周 期履歴とほぼ同じ傾向であった。

次に横補強筋の分布について見ると,主筋と同様に R=1/200,1/100の1回目と10回目ではひずみの進行は見 られない。横補強筋比 0.62%の B1 は主筋が降伏した R=1/50 以降では H4,H3 のひずみが徐々に進んでいるの が分かる。一方,横補強筋比 0.31%の B2 は R=1/50の1 回目で H2 が降伏しており横補強筋比の違いが現れてい る。この横補強筋のひずみ増大は,主筋の付着劣化が進 むとともにコンクリートがせん断抵抗機構を失い,横補 強筋にせん断力の負担が移っているためである。

3.6 曲げとせん断変形の割合

図-10に長周期履歴のB1L,B2Lについて,曲げ変形 とせん断変形の割合の推移を示す。曲げ変形とせん断変 形はそれぞれ梁軸方向の平均曲率分布とせん断変形角 分布から算出した。平均曲率は**図-9**内に示すように梁 側面に取り付けた変位計 C1~C8 により4区間について, せん断変形角は変位計 S1~S6 により3区間について求 めた。よって,梁端部の曲率にはスラブからの鉄筋の抜 け出しも含まれることになる。10回の繰り返しを与えた *R*では, B1,B2 とも繰り返し回数が増えるとともに曲げ 変形成分が徐々に減るとともに,せん断変形成分が大き くなっているのが分かる。全体的には B1 に比べて B2 の 曲げ変形成分が小さく,せん断変形成分が大きくなって いる。これは B2 の横補強筋比が B1 に比べて小さいため, 前述したように横補強筋によるコンクリートの拘束が 弱いためである。

4. まとめ

超高層 RC 造建物におけるスラブ付き梁部材について 横補強筋比と載荷履歴を実験因子とした曲げせん断実 験を実施し,以下の知見を得た。

- ノーマル履歴(14 サイクル)と長周期履歴(46 サイクル)の Q-R 関係には顕著な違いは見られなかった。 しかしながら、長周期履歴において同じ部材角での 多数回繰り返しにより徐々に耐力低下を示した。
- (2) 本実験条件に限って言えば、実建物相当のせん断余 裕度があれば、同一部材角で多数回(10回)の繰り返 し変形を与えてもR=±1/25までは顕著な耐力低下は 観測されなかった。
- (3) 実験値最大強度は曲げ略算式により精度良く評価で きた。また、せん断終局強度の算定では平均式とス ラブを考慮した HFW 式で求めた値がほぼ同等とな った。
- (4) 等価粘性減衰定数は、多数回の繰り返しを与えても R=1/50 までは一定値に落ち着く様子を示したが、
 R=1/33 では一定値に落ち着く様子を示さなかった。
- (5) 梁の軸ひずみは、スラブ圧縮の場合は最後まで進行したが、梁下端圧縮の場合は軸ひずみが反転することがあり、この傾向は横補強筋が少ないほど、繰り返し回数が多いほど反転開始の部材角が小さくなっていた。
- (6) 主筋のひずみは,降伏前の *R*=1/200,1/100 では 10 回 の繰り返しを与えてもひずみは累積しなかったこと から,付着劣化は進んでいないものと考えられる。
- (7) 横補強筋のひずみは、部材角が大きくなるとともに 上昇し、実建物相当の横補強筋比(0.62%)の場合は降 伏しなかったが、横補強筋比を小さく(0.31%)した場 合は R=1/50 で降伏した。
- (8) 曲げとせん断変形成分の推移では、繰り返しにより 曲げ変形が減少するとともにせん断変形が増加して いた。

参考文献

- 日本建築学会「巨大地震時に予想される長周期地震動 とその耐震問題」,2005年度日本建築学会大会(近畿), 研究協議会資料
- 東 洋一:鉄筋コンクリート短柱崩壊防止に関する総 合研究(その1),日本建築学会大会(東北)学術講演梗 概集,pp.1413-1414,1978年10月
- 3) 日本建築学会:長周期地震動と建築物の耐震性, pp.182-189, 2007年12月
- 4) 衣笠秀行,野村設郎:正負繰り返し履歴による曲げ降 伏ヒンジの破壊性状,コンクリート工学論文集,第5 巻第2号,pp.21-32,1994年7月
- 5) 向井智久, 衣笠秀行, 野村設郎:地震動を受ける RC 構造物の限界応答変形量を保証するに必要な耐力算 出法とその精度検証, 日本建築学会構造系論文報告集 532 号, pp.137-143, 2000 年 6 月
- 6)日本建築学会:建築耐震設計における保有耐力と変形
 性能,pp.390-393,1990年
- 7)日本建築学会:鉄筋コンクリート造建物の靭性保証型 耐震設計指針・同解説,pp.175-190,1999年

謝辞

本研究は、国土交通省の住宅・建築関連先導技術開発 助成事業「長周期地震動を受ける既存 RC 造超高層建築 物の構造部材性能評価・向上技術の開発」として、独立 行政法人建築研究所、㈱熊谷組、佐藤工業㈱、戸田建設 ㈱、西松建設㈱、㈱間組、㈱フジタの7社により共同で 行われた成果の一部です。関係者各位に御礼申し上げま す。