論文 梁端部におけるループ状鉄筋の重ね継手の性能

塚越 英夫*1·池谷 純一*2·刑部 章*3·徳田 浩*4

要旨:梁端部において上下主筋を繋いでU字形とした梁主筋と、同じくU字形とした中央側の主筋を嵌め合せる、ループ状鉄筋の重ね継手の実用化のための確認実験を行った。試験体は偏平梁のMシリーズを6体、引張鉄筋が二段配筋のHシリーズを4体とし、主たるパラメータは重ね継手長さとしたが、破壊性状は曲げ降伏後の付着破壊または側方割裂破壊となった。この結果、付着に対する検討のほかに、RC規準(案)¹⁾に示されている必要定着長さが確保できれば、ループ状鉄筋の重ね継手が梁端部に使えることが確認できた。 **キーワード**: RC 造梁、梁端部の重ね継手、主筋定着、ループ状鉄筋、構造実験

1. はじめに

日本建築学会のRC規準²⁾の16条では「鉄筋継手は部 材応力の小さい個所に設けることを原則とする。また, 同一断面で全引張鉄筋の継手を行わないことを原則と する。」とあり、梁端部における梁主筋の重ね継手は、 原則として行えない。一方, 重ね継手の全数継手設計指 針(案)³⁾では応力の大きい個所での全数重ね継手は許 されるが,継手長さが大きくなり,現実的ではない。し かし、国土交通省告示4)「平19国交告第594号第4第三 号」では「その他特別な調査又は研究の結果に基づき適 切であることが確かめられた方法によるもの」について は保有耐力計算時において安全が確かめられればよい としている。梁端部で合理的な重ね継手が行えれば、施 工や工業化生産等において様々なメリットが考えられ る。本報は梁の危険断面における重ね継手の実用化のた めの開発を目的として行った実験の結果について述べ るものである。

2. 実験概要

試験体はスタブ(大きめの柱梁接合部)を挟んで両側 に配置した。梁主筋はスタブを貫通させ,重ね継手部に おいて上端筋と下端筋を継ぎ目のないループ形状とし た。梁中央部の主筋(以降,補助主筋と称す)も重ね継 手部において上端筋と下端筋を継ぎ目のないループ形 状とした。双方のループ部分を嵌め合わせ,梁端部で重 ね継手とした。折り曲げ部の内法直径は4d_b(d_bは主筋 の呼び名)とした。梁試験体は2シリーズあり,幅がせ いより大きい偏平断面のMシリーズと引張鉄筋が二段 配筋のHシリーズとした。試験体は実建物をプロトタイ プとして,約54%のスケールモデルとした。これらの試 験体の配筋状況を図-1に示す。各シリーズ試験体のパ ラメータは重ね継手長さ,柱梁接合部端の主筋の付着除

*1 清水建設(株)技術研究所 上席研究員 工博 (正会員)
*2 清水建設(株)技術研究所 研究員 (正会員)
*3 清水建設(株)設計本部 副部長
*4 清水建設(株)生産技術本部 副本部長

去の有無,梁中央部側の補助主筋の太さとした。M シリ ーズ試験体については分割あばら筋も加えた。なお,梁 主筋と補助主筋は同一の断面位置に配置した。また,付 着除去区間を設けたのは平石らの提案⁵による梁端部の コンクリートのひび割れ低減を目的とした。

試験体の一覧を表-1 に示すが,梁主筋の有効定着長 は付着除去区間終了部(付着除去区間がない場合はスタ ブ端部)から主筋の折り曲げ中心までとした。Hシリー ズは引張鉄筋が二段配筋であるが,二段目の定着長さは 一段目よりも 3db短くした。

試験体の施工手順はスタブと梁中央部のコンクリートを先行して打設した。その 10 日後にU字形鉄筋を嵌め合わせている部分に後打ちコンクリートを打設した。 このときに,先行して打設したコンクリートの後打ち部との小口面にはコッターを設けてせん断伝達が行える

	1-			74		梁端部の長さ(mm)				
試験 体名	ь × D	主筋	補助 主筋	スター ラップ pw(%)	梁主筋の 有効定着長	全長	付着 除去部	投影定 着長さ	スターラッ プ納め代	備考
M1					15db	820	200	396	224	標準試験体
M2		480 5-D22 × SD490 300	5-D22 SD490	4-D6	18db	905	200	462	243	有効定着18db
М3	$ \begin{array}{c} 480 \\ \times \\ 300 \end{array} $			@70	10db	670	200	286	184	有効定着10db
M4				USD785	$19 d_{\rm b}$	670	0	486	184	アンボンド無
M5			5-D19	0.381%	15db	820	200	396	224	細径補助主筋
M6			5-D22		$15 d_b$	700	200	396	104	割りあばら筋*1
H1		0 8-D22 SD490	8-D22	4-D6 @70 USD785 0.571%	12db	930	270	396	264	標準試験体
H2	$320 = 8-D22 \times SD490 = 540$		8-D19		12db	930	270	396	264	細径補助主筋
H3			8-D22 SD490		$9.5 d_b$	835	270	341	224	有効定着9.5db
H4					21.7db	835	0	611	224	アンボンド無

表-1 試験体一覧

*1;外周のみ割りあばら筋、重ね長さ65db、折り曲げ余長は無し

Hシリーズ有効定着長は二段目の値。投影定着長さはMシリーズ有効定着長+3db, Hシリーズ有効定着長+6db

ようにした。

用いた材料の試験結果を表-2,表-3に示す。加力 装置は図-2に示す片持ち梁形式であり、スタブに6メ ガニュートン(MN)アムスラーを用いて、0.1bDFc相当 の荷重(Mシリーズで2.4MN,Hシリーズで2.88MN) を一定軸力として加えた。試験体にはアムスラーの加力 ヘッドに取り付けた反力フレームから1MNの串形ジャ ッキをそれぞれぶら下げ、ジャッキヘッドの中心がスタ ブ端部より1.7mの位置となるようにセットし、正負交 番の漸増載荷を行った。

表-2 コンクリートの材料試験結果

	压縮強度 (N/mm ²)	ヤング係数 (kN/mm ²)	割裂強度 (N/mm ²)
梁中央部	61.4	34.0	3.91
梁端部一般	63.9	35.5	4.06
梁端部H3	56.3	31.7	3.86

	降伏	引張	降伏	破断	ヤング
	強度	強度	歪み	伸び	係数
	(N/mm^2)	(N/mm^2)	(µ)	(%)	(kN/mm ²)
D22	512	690	2667	19.5	101
(SD490)	515	089	2007	(14.8)	191
D19	520	710	2042	17.2	106
(SD490)	552	/10	2845	(13.0)	180
D6	1024*	1101	5502	10.5	102
(USD785)	1024*	1181	5595	(6.7)	165

表-3 鉄筋の材料試験結果

*: 0.2%オフセット値

()内はひずみゲージを貼り付けた場合の値

3. 実験結果

3.1 破壊状況

得られたせん断力と部材角関係を図-3に,部材角 4%時の最終破壊状況を写真-1に示す。Mシリーズの6 試験体の初ひび割れは第1サイクルの+1/400までに入っ

たが、スタブとの打ち継ぎ面であったため、判定が微妙 であった。しかし、荷重的には 20kN 程度であり、ほぼ 計算値に合致していた。梁主筋の初降伏はM3試験体を 除き、部材角 1.2%前後であり、実際の材料強度を用い た曲げ降伏値と文献 2)に示す弾性剛性低下率 ay を用い た部材角の計算値の 1.21%とほぼ同じ値となっていた。 M3試験体の初降伏は部材角 1.7%であり、剛性の第 2 勾配が他の試験体に比べて若干低くなっていた。このこ とは、梁主筋の定着長さが短いために生じたものと考え られる。しかし、最大耐力については他の試験体と差異 はなかった。M4試験体は付着除去区間をなくして、ス タブ端部から折り曲げフックの中心までの距離を 19db として、標準試験体M1よりも4db長くしたが、履歴性

状に差異はなかった。ただし、付着除去区間を設けた試 験体に比べて、梁端部でのひび割れは多く発生していた。 M2,M5,M6試験体の復元力特性やひび割れなどの 構造性能はM1試験体とほとんど同じであった。

Hシリーズもコンクリートの打ち継ぎ目地があるた め、初ひび割れの判定が難しかったが、初ひび割れは部 材角+1/400 までに入った。梁主筋の降伏は部材角約 0.76%で記録し、その時のせん断力は 330kN 前後であっ た。最大耐力はH3試験体を除き、部材角 2%近傍で記 録した。部材角 2%の各試験体の破壊状況は、柱梁接合 部端部のコンクリートの口開きが顕著になったが梁の 損傷については幅の広いひび割れなどはなく、優れた構 造性能を示していた。しかし、部材角 2%の繰り返し加 力時には、軽微なコンクリートの圧縮破壊が観察され始 めていた。部材角 3%になると,はっきりとした付着系 のひび割れが入り始め,この影響で耐力低下が出始めた。 部材角 4%では被りコンクリートの剥落や端部コンクリ ートの圧縮破壊も起こり始め,顕著な耐力低下につなが った。

両シリーズの試験体ともに、梁主筋の折り曲げ部のコ ンクリートのひび割れが顕著であった。このため、写真 -2に示すように梁端部のコンクリートを材軸方向に 切断して内部を確認したところ、コア部分にはほとんど ひび割れはなく、被り部分のみの破壊であった。このた め、梁主筋の折り曲げ部の破壊形状はRC靭性指針^のの 定着強度に示す「側方割裂破壊」の様相となっていた。

3.2 最大耐力

Hシリーズの付着破壊については、梁のヒンジ領域に

写真一1 最終破壊状況

写真-2 コア部分の破壊状況(H1)

16 本の引張鉄筋が存在していることに起因していると 考えられる。このため引張鉄筋の本数を考慮できる RC 靱性指針に示された式(1)により付着強度を算定した。こ の式は付着破壊の影響を考慮したせん断信頼強度 V_{bu}で あり、この結果を梁の曲げ降伏時のせん断力 Q_{mu} , RC 靱性指針によるせん断終局強度 Q_{sun0} ,実験値と併せて表 -4に示す(式に用いた記号の説明は最後に示す)。こ のときに V_{bu} における主筋の本数は梁主筋に補助主筋を 加えた数とした。また、付着破壊の影響を考慮したせん 断信頼強度 V_{bu} と実験値との関係を曲げ降伏時のせん断 力で基準化して図-4に示す。この図には梁端部でルー プ状の重ね継手を行った文献 5)と 90 度フックの重ね継 手を行った文献 7)のデータも併せて示す。付着強度 V_{bu} は曲げ降伏時のせん断力 Q_{mu} より大きく、曲げ破壊先行 であるが、Hシリーズでは圧縮縁のコンクリートの破壊 を契機として付着破壊が進展していったものと考えら れる。

$$V_{bu} = \min(V_{bu1}, V_{bu2}) \quad (kN) \tag{1}$$
$$V_{bu1} = T_x \cdot j_e + \left\{ v \cdot F_c - \frac{2.5 \cdot T_x}{\lambda \cdot b_e} \right\} \cdot \frac{b \cdot D}{2} \cdot \tan \theta$$

	実験値(kN)			計算值 (kN)			
試験体名	Thut	負加力	亚坎荷	曲げ降伏強度	せん断終局強度	付着信頼強度	
		(絶対値)	十均恒	Q_{mu}	Q_{sun0}	V_{bu}	
M1	138	147	143				
M2	141	145	143			主筋本数 (10本時) 210	
M3	140	144	142	134	516		
M4	141	151	146	(上限強度=147)	510		
M5	137	146	142			210	
M6	142	146	144				
H1	419	434	427			401	
H2	417	422	420	391	1018	471	
H3	405	420	413	(上限強度=429)	1018	452	
H4	442	446	444			491	

表一4 最大耐力

上限強度 σ u は信頼強度 σ y×1.15 とした

$$V_{bu2} = \frac{\lambda \cdot v \cdot F_c}{2} \cdot b_e \cdot j_e$$

$$Q_{mu} = M_u / \ell = 0.9 \cdot a_t \cdot \sigma_y \cdot d / \ell \quad (kN) \qquad (2)$$

$$Q_{sun0} = \min(Q_{su01}, Q_{su02}, Q_{su03}) \quad (kN) \qquad (3)$$

3.3 定着長さ

梁端部における重ね継手は梁主筋が降伏し、ヒンジが 形成されるため、梁主筋の定着強度が充分にあることが 必要となる。ここでは、RC規準(案)の17条に示され た式(4)によって、定着性能の検討を行う。なお、式(4) は柱梁接合部での主筋の定着についての規準である。本 工法の場合は梁端部で梁主筋、補助主筋の上下主筋がそ れぞれU字形につながっており、さらにあばら筋でコア コンクリートが拘束されている。このため、直線的な重 ね継手とは異なり、コアコンクリートからの応力伝達が スムースに行われるとして式(4)を用いた。この計算結果 と実験値について、コンクリート強度をパラメータとし てプロットしたものを図-5に示す。これによると, M 3試験体,H3試験体は定着長さが確保されていないこ とになる。H1, H2試験体は実験時のコンクリート強 度でプロットしているが, コンクリートの設計基準強度 は 48N/mm² であるため,設計時で既に定着不足となる。 また, 文献 5)のデータは梁主筋に SD390 の D19 を用い ているが、この試験体も定着長さが確保されていない。 一方, 文献 7)のデータは梁主筋に SD345 の D19 を用い ているため、定着長さが確保されている。図-5に示し たHシリーズ以外のデータはいずれも曲げ破壊先行型で あり、部材角 4%でも耐力低下がほとんどない構造性能 を示していたものである。

RC 規準(案)による式(4)は RC 靭性指針に示された 式(5)を略算化したものであるが,式(4)は必要定着長さに ついてまとめたものであり,式(5)は定着強度についてま とめたものである。また,式(5)の適応性については充分 に検討されている。両式の必要定着長さについて算定し

図-4 付着信頼強度の計算値と実験値の比較

図-5 コンクリート強度と定着長さの関係

た結果を表-5に示す。この表より、Hシリーズでは式 (4)の方が式(5)より必要定着長さを大きく算定し、若干安 全側の評価となっており、略算値としては妥当であると いえる。一方、Mシリーズでは式(4)は式(5)に比べて24% ~35%大きく評価しており、偏平梁については安全すぎ る評価となっている。

$$\ell_{ab} = \alpha \cdot \frac{S \cdot \sigma_t \cdot d_b}{10 \cdot f_b} \quad (\text{mm}) \tag{4}$$

$$f_u = 210 \cdot k_c \cdot k_j \cdot k_d \cdot k_s \cdot F_c^{0.4} \ge \sigma_t \quad (\text{N/mm}^2) \quad (5)$$

	Fc=48	N/mm ²	$\sigma_{\rm B} = 63.9$ (56.3)				
	設計基	準強度	N/mm ² 実強度				
	RC 規準	RC 靭性	RC 規準	RC 靭性			
M シリース゛	359	289	302	223			
H3 以外	250	242	302	292			
H3	539	545	327	311			

表-5 必要定着長さ比較:単位(mm)

3.4 主筋のひずみ分布

図-6に実験から得られた主筋のひずみ分布を示す。 M1試験体では梁主筋が部材角1/100から1/50の間に降 伏したが,この部分は付着除去区間からスタブ側に入っ た端部(LD1)であった。付着除去区間の梁中央側の端 部(LD2)でも同程度のひずみとなっており,付着除去 区間が一気に降伏していた。U字形に折り曲げた部分 (LD5)については,梁中央部側の梁主筋では,変形の 増大に伴ってひずみ値も大きくなったが,スタブ際の補 助主筋(LC5)ではひずみは大きくなっていないことが 確認できた。なお,本来は梁主筋と補助主筋は梁せい方 向に対して同じ位置に配置しているが,図を見やすくす るために,ずらして表現した。また,LC2,LD5,LD6 も同じ位置にあるが,ずらして表現した。

4. まとめ

梁端部にループ状の重ね継手を持つ 10 体の試験体に ついて静加力実験を行った結果,以下の知見を得た。

- 接合部から突出したU字形の梁主筋近傍の破壊性状は、付着割裂破壊や側方割裂破壊となり、コア部の コンクリートの破壊はほとんど観察されなかった。
- 2) 偏平梁のMシリーズは若干スリップ性状がみられた ものの、コンクリートの破壊や耐力低下の少ない優 れた構造性能を示した。
- 3) 二段配筋のHシリーズは、部材角2%までは優れた構造性能を示したが、3%以降に付着破壊が進展して、耐力低下が顕著になった。
- 4) RC 規準(案)に示された必要定着長の式は、一般の 梁の場合にはほぼ妥当であるが、偏平断面の梁につ いては式(5)に比べ24%~35%大きく評価されている。

T_r:降伏ヒンジを計画する部材単位長さ 式の記号の説明 *あたりに負担できる付着力 j_e:梁せい方向のあばら筋芯々間距離 v: コンクリート圧縮強度の有効係数 F_c: コンクリートの圧縮強度 *λ*:トラス機構の有効係数 b: トラス機構に関与する断面の有効幅 *b*:梁幅 D:梁せい $\tan\theta$: \mathcal{T} ーチ機構の圧縮束の角度 α :1.0 S: 必要定着長さの修正係数(=0.7) σ_t:鉄筋の短期許容応力度 d_b:梁主筋の呼び名に用いた数値 付着割裂の基準となる強度 f_b : 側面被り厚さの評価係数 k_c : k;: 折り曲げ位置の評価係数 k_d: 投影定着長さの評価係数 横補強筋の効果の評価係数 k:

参考文献

- 鉄筋コンクリート構造計算規準の改定について、 2008年度日本建築学会大会 PD 資料,2008.9
- 鉄筋コンクリート構造計算規準・同解説 1999,日本 建築学会
- 重ね継手の全数継手設計指針(案)・同解説,日本 建築学会,1996.2
- 2007 年版 建築物の構造関係技術基準解説書,全国 官報販売協同組合
- 5) 平石久廣,山田宗徳,斉藤亮平:重ね継ぎ手方式に よる降伏機構分離型鉄筋コンクリート造の開発,日 本建築学会構造系論文集,第 592 号,pp.159-165, 2005.6
- 6) 鉄筋コンクリート造建物の靱性保証型耐震設計指 針・同解説,日本建築学会,1999年版
- 7) 塚越英夫,諸井陽児,斉藤豊,芳村学:はり端部に おけるフック付重ね継手の効果,コンクリート工学 年次論文報告集, Vol.12, No.2, 1990.6