論文 ヒンジリロケーションを用いた RC 壁柱-床梁架構の構造性能

永井 覚*1・山元 雄亮*2・高稻 宜和*3・丸田 誠*4

要旨:室内空間に柱形や梁形のない居住空間を実現できる RC 壁床架構は,通常の柱梁架構に比べ接合部が 小さいため,地震時に接合部損傷が大きく,保有耐力が小さくなる場合が多い。本研究では,更なる保有耐 力向上を目的に,接合部に高強度コンクリートを用い,かつ,床梁主筋の降伏位置を接合部から離す概念(ヒ ンジリロケーション)を適用した壁柱-床梁架構の構造実験を実施した。その結果,床梁が曲げ破壊型とな る壁柱-床梁架構は,ヒンジリロケーションを実現し,高い保有耐力・変形性能を示した。また,壁柱-床 梁接合部せん断強度は,従来の接合部せん断強度評価式に比べて,高いせん断強度を有することが示された。 キーワード:壁柱-床梁架構,壁床架構,ヒンジリロケーション,接合部せん断強度

1. はじめに

中低層集合住宅を中心に、室内空間に柱形や梁形のない快適な居住空間を実現できる RC 壁床架構を採用する 例が増えている。この RC 壁床架構は、ラーメン架構の 柱梁接合部と比較すると接合部が小さいため、接合部の せん断耐力や接合部内のスラブ主筋付着耐力等の構造 性能を把握する必要がある。

これまでに、壁床構造の接合部に関する研究は、瀧口 ら¹⁾, 槇谷ら²⁾, 菅田・西山ら³⁾, 足立ら⁴⁾ など多数報 告され,スラブ主筋の配筋方法,接合部曲げ補強筋,接 合部コンクリートの高強度化、プレストレスの導入など の有効性が示されている。一方、筆者らは、**図-1** に示 すように、施工の合理化と接合部の損傷低減を目的に、 接合部の高強度 PCa 化とヒンジリロケーション(接合部 を跨いでスラブ主筋をU字定着させ、スラブ筋の降伏位 置を接合部から離す概念)を壁床架構に適用することに より、接合部の損傷が低減できることを示した⁵⁾。

本研究では,更なる高保有耐力を有する壁床架構の実 現を目的に,外見上は壁スラブ架構と同じとす ストロの こわまでの時かとびスラブの形容で はなく、ラーメン架構のような柱形配筋と梁形配筋を内 蔵する壁柱-床梁架構の構造性能を検討する。なお、本 研究でも、接合部損傷低減を実現するため、ヒンジリロ ケーションを採用し、この部分と接合部を高強度 PCa で 製作することとした。

2. 実験概要

2.1 試験体

図-2 に試験体の形状及び配筋を,表-1 に試験体一 覧を,表-2に使用材料特性一覧を示す。試験体は、図 -1に示すヒンジリロケーションを用いた壁柱・床梁架 構の十字形柱梁接合部6体で,縮尺は2/3程度である。 全試験体とも、壁柱・床梁断面(せい200mm,幅600mm), 壁柱せん断スパン900mm,床梁せん断スパン1600mm は 共通である。実験因子は,破壊形式(梁曲げ破壊:PR1 ~PR3,接合部せん断破壊:PR4~PR6),梁降伏位置 (PR3:600mm, PR3以外:400mm),接合部コンクリ

*3 鹿島建設(株) 技術研究所建築構造グループ 研究員 博士(工学) (正会員)

*4 鹿島建設(株) 技術研究所建築構造グループ 上席研究員 博士(工学) (正会員)

ート強度(Fc30, Fc60, Fc90)と
 した。なお,接合部 PCa 部以外
 のコンクリート設計基準強度は
 Fc30 である。また,コンクリー
 トは,実施工を勘案し,PCa 接
 合部を打設後に,床梁及び壁柱
 を打設した。

2.2 加力方法

加力は,壁柱上下部をピン・ ローラー支持し,壁柱に一定軸 力 800kN(軸力比 0.2)を保持さ せ,床梁に逆対称せん断力を作 用させた。載荷履歴は正負交番

繰返し漸増載荷とし,層間変形角 R=±2.5×10³rad を 1 サイクル, R= ±5, 10, 20, 40×10⁻³rad を各 2 サイクル, 最終的に R=+100×10⁻³rad まで加力した。

3. 実験結果

表-4 に実験結果一覧を,図-3 に梁せん断力-層間 変形角関係を,写真-1に破壊状況を示す。梁せん断力 -層間変形角関係には,日本建築学会 RC 規準⁶⁾の曲げ 強度略算式による曲げ終局強度計算値 cQ'fu, HiRC 接合 部せん断強度式⁷⁾による接合部せん断強度計算値 pQsu を併せて示した。

3.1 実験経過

全試験体とも、10×10⁻³rad のサイクルまでに、梁付根 及び降伏位置に曲げひび割れ、柱に曲げひび割れ、接合 部にせん断ひび割れが順次発生した。

その後,梁曲げ破壊型試験体 PR1~PR3 では、40× 10⁻³rad のサイクルで、梁降伏位置で主筋降伏し、その後 の変形増大に伴い、梁降伏位置の曲げひび割れが進展・ 拡大した。なお、主筋降伏後に、梁鉛直接合面コッター から、梁主筋及びU字型定着部に沿った水平及び鉛直ひ び割れが発生した。最終的に、100×10⁻³rad のサイクル で、梁降伏位置の曲げ圧縮側コンクリートの圧壊・剥落 が顕著となり曲げ破壊の様相を呈した。なお、PR3 では、 梁鉛直接合面のせん断ずれが生じ、最大耐力を示した。 これは、PR3 は、PR1, PR2 に比べて想定降伏位置が柱面 より離れており、鉛直接合面を含むヒンジ領域の塑性回 転がより大きくなり、せん断ずれが生じたと考えられる。

ー方, 接合部せん断破壊型試験体 PR4~PR6 では, 20 ×10⁻³rad サイクルで, 梁及び柱の曲げひび割れ, 接合部 のせん断ひび割れ本数や幅が増加し, 40×10⁻³rad サイク ルで, 接合部せん断ひび割れが進展し, 接合部かぶりコ ンクリートが剥落し (PR4, PR5) た。100×10⁻³rad サイ クルの途中で接合部の損傷が顕著となって耐力低下し た。なお, PR6 は, 40×10⁻³rad のサイクルで, 梁想定降

表-1 試験体一覧

試 験 体 名	PCa部 Fc (N/mm²)	床梁			壁柱			接合部	
		断面寸法 [せん断 スパン] (mm)	主筋	補強筋	断面寸法 [せん断	主筋	補強筋	補強筋	備考
			配筋 [pt(%)]	配筋 [p _w (%)]	スパン] (mm)	配筋 [pt(%)]	配筋 [p _w (%)]	配筋	
PR1	60	B=660 × D=200 [1600]	6-D16	梁非ヒンジ領域 2-D10の100	B=660 × D=200 [900]	6-D19 SD390 [1.30] 8-D19 SD490 [1.74]	4-D10 SD295A @100 [0.43]	2組 D10 SD295A	梁曲げ 破壊型
PR2	90		[0.90]	SD295A[0.22] 梁ヒンジ領域 6-D10@100 SD295A[0.65] U定着部 4-D10@100 SD295A[0.43]					
PR3	60		5-D16 SD390 [0.75]						
PR4	30		6-D16						接合部 せん断 破壊型
PR5	60		SD685 U						
PR6	90		[0.90]						
*PCa 部以外のコンクリート設計基準強度は Fc30									

表-2 鉄筋の機械的性質

	降伏強度	引張強度 ヤング係数			
鋼種	σy	σ_{u}	$E \times 10^5$	用途	
	(N/mm^2)	(N/mm^2)	(N/mm^2)		
D10SD295A	352.4	486.2	1.90	補強筋(PR1-6)	
D16SD390	452.5	651.8	1.94	梁主筋(PR1-3)	
D16SD685	745.6	941.6	1.95	梁主筋(PR4-6)	
D19SD390	463.7	654.2	1.95	柱主筋(PR1-3)	
D19SD490	522.6	696.0	1.92	柱主筋(PR4-6)	

表-3 コンクリートの機械的性質

= b		実験時						
試験	設計	圧縮強度	わが 係数		引張強度			
いない	本 年 221日	σ_{B}	Ec	ポアソン比	σ_t			
评	迅反	(N/mm ²)	(x10 ⁴ N/mm ²)		(N/mm ²)			
	Fc60	62.3	3.10	0.176	4.60			
FNI	Fc30	36.1	2.55	0.169	3.12			
002	Fc90	89.7	3.49	0.207	5.76			
FNZ	Fc30	37.2	2.53	0.175	3.17			
DD3	Fc60	63.4	2.99	0.189	4.72			
FKJ	Fc30	37.1	2.47	0.189	3.14			
PR4	Fc30	35.7	2.48	0.169	3.06			
DD5	Fc60	60.1	2.95	0.179	4.42			
FKJ	Fc30	33.0	2.40	0.170	2.89			
DD6	Fc90	90.5	3.49	0.217	5.79			
110	Fc30	39.1	2.64	0.172	3.33			

伏位置で主筋降伏したが,最終的には接合部のせん断変 形が増大して接合部がせん断破壊に至った。

3.2 梁せん断カー層間変形角関係

図-3 に加え、図-4 に梁せん断力-層間変形角関係 の包絡線を曲げ破壊型,接合部せん断破壊型ごとに示す。

曲げ破壊型 PR1~PR3 のせん断力-層間変形角関係は, 大変形まで大きな耐力低下も見られず,また,梁主筋降 伏後も変形性能に優れ,エネルギー吸収性能の高い紡錘 型履歴性状を示した。また,最大強度までの包絡線はほ ぼ同様で,コンクリート強度や降伏位置が及ぼす最大強 度までの構造性能への影響は小さいと考えられる。一方, 最大強度時変形は,コンクリート強度が高い方が,降伏 位置が柱に近い方が大きくなった。

なお,曲げ破壊型試験体では,接合部せん断強度計算 値を大きく上回っているにもかかわらず,接合部に顕著 な損傷は観察されなかった。

表-4 実験結果及び計算値一覧

図ー3 梁端せん断カー層間変形角関係

20×10⁻³rad 時

100×10⁻³rad 時 写真一 1 破壊状況

100×10⁻³rad 時

一方,接合部せん断破壊型の PR4~PR6 では,最大強度は、コンクリート強度の増大に伴い、増大している。

3.3 接合部せん断応カー接合 部せん断変形角関係

図-5 に曲げ破壊 PR1 と接 合部せん断破壊 PR5 の接合部 せん断応力 τ -接合部せん断 変形角 γ の関係を示す。

曲げ破壊に至った試験体は 全て PR1 と同様な挙動を示し, $\tau - \gamma$ 関係は,実験終了まで, 残留変形の少ないほぼ弾性的 な挙動を示し,梁主筋の降伏 に伴う接合部せん断変形の増 大は見られない。また,接合 部せん断強度計算値以上の接 合部入力せん断応力度であっ ても,接合部せん断変形は増 大しなかった。

一方,接合部せん断破壊に至った試験体は、いずれも PR5 と同様な挙動を示し、接合部の損傷が顕著となる層 間変形角 40×10³rad のサイクルから、接合部せん断残 留変形角が徐々に増加し、接合部せん断変形角 20× 10⁻³rad 程度で接合部せん断破壊に至っている。なお、PR6 の接合部損傷は**写真-1**では見づらいが、せん断変形角 が増大して強度低下に至った。

3.4 梁主筋ひずみ分布

図-6 に、PR1 の床梁下端筋のひずみ分布を示す。本 実験ではヒンジリロケーションを生じさせるため、U字 主筋(左梁主筋と右梁主筋)が重ね継手となっている。 この重ね継手部の2本の下端主筋のひずみ分布は、梁降 伏位置(U字筋の折曲げ起点)を除いて、ほぼ同じひず み分布であることから、重ね継手部で有効に応力伝達さ れていることが分かる。また、左梁筋の降伏後は、接合 部内に主筋の塑性化が進展せず、接合部内の主筋の付着 が劣化していないことが伺える。なお、梁主筋が引張ひ ずみを示す左梁に着目すると、左梁降伏位置における右 側下端筋のひずみは、折り曲げ起点位置であるにもかか わらず、若干の引張ひずみを示しているため、左梁下端 筋のひずみは、左梁降伏位置(折り曲げ起点位置)に比 べて、U字先端位置の方が大きくなり、U字先端位置で 降伏が先行して生じている。

3.5 接合部せん断補強筋ひずみ

図-7 に, PR5 の接合部せん断応力度-接合部補強筋 ひずみ関係を示す。これより,接合部補強筋は,最大強

度までに降伏し,塑性化状態となっていることから,接 合部補強筋は接合部せん断強度に有効に寄与している ものと考えられる。これは,一般的なラーメン構造の柱 梁接合部では,接合部補強筋は接合部せん断強度への寄 与が小さいとされているが,本研究で対象とするような 奥行きが長い壁床架構の場合,接合部補強筋は,接合部 補強筋のせん断方向の抵抗だけでなく,接合部奥行き方 向の拘束効果に寄与しているためと考えられる。

4. 考察

4.1 最大強度

図-8に、梁曲げ破壊に至った PR1~PR3、及び、梁曲 げ降伏が先行した PR6 試験体を対象に、実験時最大強度 eQmを梁降伏位置の曲げ強度計算値 bQfuで除した値 eQm /bQ'fuと、梁危険断面曲げ強度計算値 bQfuを bQ'fuで除 した梁曲げ指標(bQfu/bQ'fu)との関係を示す。なお、 曲げ強度は日本建築学会 RC 規準⁶⁾の曲げ強度略算式に よる。なお、主筋ひずみ分布における梁主筋降伏は U字 先端位置で生じたが、検討対象とする降伏位置は折曲げ 起点位置とした。これは、梁主筋降伏位置はモーメント 勾配により移動する可能性が大きく、実建物で場合によ り検討断面を変えるのは煩雑である。そこで、検討断面 を折曲げ起点位置に統一して性能評価を行っている。

いずれの試験体も降伏位置の梁曲げ強度計算値は実 験値を安全側に評価可能である。なお、本実験では、梁 曲げ指標を 1.25 以上確保することによってヒンジリロ ケーションを実現できた。

4.2 接合部せん断強度

図-9に,接合部せん断破壊に至った PR4~PR6 試験体について,最大接合部せん断応力度-コンクリート圧縮強度関係を示す。図中には,HiRC 接合部せん断強度式(HiRC式)⁷⁾に加えて,日本建築学会の RC 靭性指針に示される接合部せん断強度式(靭性式)⁸⁾,および,実験結果のほぼ下限に近い値として両式の 1.6 倍の式を併せて示す。なお,PR6 試験体は梁曲げ降伏後に接合部せん断破壊に至っていることから,梁曲げ降伏しない場合はさらに上昇するものと考えられるため,図中には上矢印を付記している。

本実験の範囲では、一般的な柱梁接合部を対象に示さ れている接合部せん断強度式は、実験結果を過小に評価 しており、最大接合部せん断応力度は両式の 1.6 倍以上 であった。一方、靱性式に比べて、HiRC 式の方がコン クリート強度と最大接合部せん断応力度の傾向を捉え ることができており、HiRC 式の 1.6 倍で概ね下限式とな る。これは、一般的な柱梁接合部に比べて、壁床接合部 では奥行き方向に長い、及び、主筋降伏が柱面から離れ ており、柱面位置のひび割れが大きく開口しない等、接 合部を拘束する効果が大きいため、接合部せん断強度が 増大するものと考えられる。また、主筋の降伏後、塑性 化が接合部に進展しないことも接合部性能を改善して

いると考えられる。

以上より,本研究で対象とする壁柱-床梁架構の接合 部せん断強度 τ_{ju}は,本実験結果の範囲において,次式 が下限式として与えられる。

$$\tau_{ju} = 1.6 \times 1.57 \sqrt{\sigma_B} = 2.51 \sqrt{\sigma_B} \tag{1}$$

ここに, σ_B :コンクリート圧縮強度である。

一方,図-10に、(1)式を用いた接合部せん断強度時梁 せん断力 pQsu-m を梁曲げ強度 bQ'fu で除した接合部せん 断指標 (pQsu-m/bQ'fu)と最大強度と bQ'fu との比の関係 を示す。これより,接合部せん断指標が1を超えていれ ば,梁曲げ降伏が先行する破壊モードとなっている。な お,梁曲げ降伏後の接合部せん断破壊の評価法は今後の 検討課題である。

4.3 復元力特性

壁柱-床梁架構の復元力特性評価にあたり,通常のRC 柱梁架構と同様に,梁剛性,柱剛性,接合部剛性を考慮 することにより算定した。なお,梁剛性にはヒンジリロ ケーションによる剛性を適切に評価する必要がある。そ こで,床梁を図-11に示すように,重ね継手部と梁部の 曲げ剛性を考慮する復元力特性モデルにより復元力評 価した。復元力特性の算定方法は,まず,初期剛性 K₁ は,重ね継手部と梁部の曲げ剛性を直列に仮定した曲げ 剛性 K_fとせん断剛性 Ks より求める。曲げひび割れ強度 は,RC 規準⁶⁰に示される通常梁と同様の方法を用い,降 伏時剛性低下率は菅野式⁶⁰により算定した。曲げ強度は 先述した値とし,曲げ降伏後剛性 K₃は初期剛性の 1/1000 と仮定した。また,接合部はせん断剛性のみを考慮し, 日本建築学会靱性指針に示される柱梁接合部の評価方 法を用いた。ただし,接合部せん断強度は(1)式とした。

曲げ破壊した PR1 試験体について, 梁せん断力-層間 変形角関係包絡線(実験値)に,復元力特性計算値を併 せて示す。これより,復元力特性計算値は実験結果を適 切に捉えることができており,ヒンジリロケーションを 適用した RC 壁柱-床梁架構においても,既往評価法を 適用可能である。

5. まとめ

ヒンジリロケーションを用いた RC 壁柱-床梁架構の 構造実験を実施し,以下の結論を得た。

- (1) ヒンジ・リロケーションの概念を採用した RC 壁柱-床梁架構は,柱面から離れた降伏位置で梁主筋の降 伏が生じ,高い保有耐力を実現できる。
- (2) 梁曲げ終局強度は、ヒンジリロケーションを考慮し、 梁降伏位置における曲げ強度とすれば、既往算定法 により評価可能である。

- (3) 接合部せん断終局強度は、既往評価式の1.6倍以上の 高耐力を有しており、既往評価式では過小評価とな ることから、本実験結果を評価可能な接合部せん断 強度式を提案した。
- (4) 壁柱-床梁架構の復元力特性は、ヒンジリロケーションを考慮した既往評価法で概ね評価可能である。

参考文献

- 熊澤純一,瀧口克己,大谷哲也:新しい配筋による RC 造壁・スラブ接合部の耐震性能に関する実験的 研究, C-2,構造IV, pp.265-268, 2001.9
- 2) 堤純,槇谷榮次,荒木秀之,菊本一高,依田定和: ボイドラーメンにおけるスラブー壁接合部の補強 方法に関する実験的研究,日本建築学会大会学術講 演梗概集, C-2,構造IV, pp.271-272, 2001.9
- 西村知明,谷昌典,菅田昌宏,西山峰広,西崎隆氏: 大平眞高強度PCa接合部を用いた壁床構造の耐震性 に関する実験的研究,日本建築学会大会学術講演梗 概集,C-2,構造IV,pp.715-720,2006.9
- 4) 足立将人,益尾潔,鈴木紀雄,吉松敏行:RC 薄板 構造一壁・スラブ部分架構一の構造性能に関する研 究,機関紙 GBRC,121 号,資料 No.611, pp.31-38, 2005.7
- 山元雄亮,永井覚,丸田誠:ヒンジリロケーション RC 壁床架構の構造性能,コンクリート工学年次論 文集, Vol.30, No.3, pp.397-402, 2008
- 6) 日本建築学会:鉄筋コンクリート構造計算規準・同 解説 許容応力度設計法, pp.51-59, 1999
- 7) 丸田誠,真田暁子:170N/mm²を超える高強度コン クリートを用いた内柱梁接合部の挙動,コンクリー ト工学年次論文集, Vol.26, No.2, pp.469-474, 2004
- 8) 日本建築学会:鉄筋コンクリート造建物の靱性保証 型耐震設計指針・同解説, pp.245-249, 1999