論文 超高強度コンクリートを用いたRC柱の繰返し圧縮性状

岡田 直子^{*1}·今井 和正^{*2}·小室 努^{*3}·寺嶋 知宏^{*4}

要旨: 圧縮強度 150 N/mm²級の超高強度コンクリートを用いた無筋コンクリート試験体および鉄筋コンクリ ート柱試験体の多数回繰返し圧縮実験を行った。短期許容圧縮応力度を上限応力とした 200 サイクル繰返し 圧縮加力では、いずれの試験体も繰返しによる破壊は生じないことを確認した。また、無筋の試験体と鉄筋 コンクリート柱試験体では、繰返し加力により破壊する上限応力比に違いが見られた。 キーワード: 超高強度コンクリート、繰返し加力、短期許容圧縮応力度

1. はじめに

コンクリートの短期許容圧縮応力度は、「鉄筋コンク リート構造計算規準・同解説」¹⁾において、多数回繰返 し加力実験等を参考に設計基準強度 Fc の 2/3 と規定され ている。しかしながら、同規準では Fc 60 N/mm²以下の コンクリートが対象とされており、超高層建物の下層階 柱に使用されている Fc 100 N/mm²を超えるような超高 強度コンクリートに関する規定はない。一方、これらの 超高層建物が、プレート境界型巨大地震で発生が懸念さ れている長周期地震動を受けた場合、下層階柱は相当回 数の繰返し応力を受けると考えられる。

こうした中,近年,超高強度コンクリートを対象とし た繰返し加力実験が報告されるようになった^{2)~5)}が,い ずれも無筋のコンクリート試験体を対象としており,自 己収縮によって生じる内部応力や微細なひび割れの影 響を考慮した鉄筋コンクリート(以下,RC)部材とし て検討されていない。本論文では,この点に着目して実 施したRC柱の多数回繰返し圧縮実験の結果を報告す る。

2. 実験概要

2.1 試験体

試験体一覧を表-1 および表-2 に示す。基礎的な繰返し性状を把握するための無筋のコンクリート試験体 ϕ 100×200 mm と, RC柱の性状把握を目的としたRC 柱試験体を計画した。同時に,各々のシリーズについて

表-1 試験体一覧(コンクリート試験体)

	収縮		加力方法				
	低減剤	上限応力	周期	応力速度			
			(sec.)	(N/mm ² /sec.)			
C-O-67-H-1∼3		0.67σ _B	23	8.8			
C-O-8O-H-1∼3		0.80σ _B	23	10. 6			
C-O-67-L-1∼3	<i>†</i> 51	0.67σ _B	226	0. 9			
C-0-80-L-1	ふし	0.80σ _B	226	1.1			
C-0-85-L-1		0.85σ _B	240	1.1			
C-0-90-L-1		0.90σ _B	231	1. 2			
С-1-67-Н-1~3		0.67σ _B	23	8.8			
С-1-80-Н-1~3		0.80σ _B	23	10.6			
C−1−67−L−1~3	± 11	0.67σ _B	226	0.9			
C-1-80-L-1	β	0.80σ _B	226	1.1			
C-1-85-L-1		0.85σ _B	240	1.1			
C-1-90-L-1		0.90σ _B	231	1. 2			

※下限応力:0.05σ_B

表-2	試験体一覧	(RC試験体)	
主教		オマンクロ	

	町山		±	月刀	17用 5 田 月	ת				
No.	(mm)	収縮 低減剤	配筋	р _g (%)	配筋	р _w (%)			加力方法	
RCA-1	□220		4-D16	1.6						
RCA-2	□220	なし	8-D16	3.3	□-U6. 4-@30	0.91				
RCA-3	□220		4-D25	4.2					単調加力	
RCA-4	□220		4-D16	1.6				(かん	^{ぶり} 破壊ま [・]	で)
RCA-5	□220	あり	8-D16	3.3	□-U6. 4-@30	0.91				
RCA-6	□220		4-D25	4.2						
								上限応力	周期 (sec.)	応力速度 (N/mm ² /sec.)
RCB-1	□220		8-D16	3.3	□-U6. 4-@30	0.91	公品	0.80 $\sigma_{\rm B}$	240	1.1
RCB-2	□220	なし	8-D16	3.3	□-U6. 4-@30	0.91	深	0.67σ _B	240	1.0
RCB-3	□280		8-D25	5.2	□-U7.1-@30	0.95		0.67σ _B	240	1.0
RCB-4	□220		8-D16	3.3	□-U6. 4-@30	0.91	tin tin	0.80σ _B	240	1.1
RCB-5	□220	あり	8-D16	3.3	□-U6. 4-@30	0.91	<u></u>	0.67σ _B	240	1.0
RCB-6	□280		8-D25	5.2	□-U7. 1-@30	0.95	~	0.67σ _B	240	1.0
※下限応力	: 0.05σ _B									

*1 大成建設(株) 技術センター 研究員 工修 (正会員)

*2 大成建設(株) 技術センター 主任研究員 博士(工学) (正会員)

*3 大成建設(株) 設計本部 プロジェクトリーダー 博士(工学) (正会員)

*4 大成建設(株) 設計本部 プロジェクト・エンジニア 工修

単調圧縮実験を行い、圧縮強度を把握した。無筋の試験 体の繰返し加力では、加力方法(2.2 節に詳述)をパラ メーターとした。RC柱試験体については、単調加力 (RCA シリーズ) では主筋量を,繰返し加力 (RCB シ リーズ)では加力方法(2.2節に詳述)と断面寸法をパ ラメーターとした。

コンクリートの配合を表-3 に示す。目標圧縮強度は 全試験体共通で150 N/mm²とした。収縮による内部応力 やひび割れがRC部材の力学性状に影響を及ぼす可能 性がある ⁶ため、収縮低減剤の有無を実験パラメーター の一つにした。また、図-1 に示す φ 150×300 mm のコ ンクリート試験体を作製し、鉄筋周囲に生じるとされる 収縮による法線ひび割れ⁷⁾の影響をその割裂試験により 把握する計画とした。割裂試験体では、収縮低減剤のほ か,養生方法(現場封緘養生と簡易断熱養生),鉄筋の 有無および鉄筋径(D16とD25)をパラメーターとし、 同一条件の試験体をそれぞれ5体ずつ用意した。

RC柱試験体の形状・寸法を図-2に示す。なお、硬 化時に発生する鉄筋の拘束応力を把握するため、打設時 から加力実験時までの鉄筋ひずみを計測した他、別途用

表-3 コンクリートの配合

水結合 材比	水	結合材 ^{*1}	細骨材*2	粗骨材*3	化学 混和剤 ^{*4}	収縮 低減剤 ^物
W/B	W	В	S	G	SP	SRA
(%)	(kg/m^3)	(kg/m ³)	(kg/m ³)	(kg/m ³)	(% × B)	(kg/m^3)
15.0	150	1000	493	811	1. 7	(7) *6

普通ポルトランドセメント:スラグせっこう系混和材:シリカフューム=7:2:1 (質量比)

*1:自通がルドウンドセントド・クラビック(6号) *2:安山岩系砕砂、*3:安山岩系砕石(6号) *4:ポリカルボン酸エーテル系高性能減水剤 *5:低級アルコールアルキレンオキシド付加物(「収縮低減剤あり」試験体のみに使用)

(*4. *5はいずれも単位水量Wに対して内割り)

*6:収縮低減剤ありの場合には()内の数値、収縮低減剤なしの場合には0とする

表-4 使用材料の強度試験結果

(a) コンクリート

(a-I)収縮低減剤なし								
	圧縮強度		ヤン	ブ係数	ポアソン比			
材齢	$[N/mm^2]$		[kN/	′mm²]				
[日]	現場	簡易	現場	簡易	現場	簡易		
	封緘	断熱	封緘	断熱	封緘	断熱		
72 (実験前)	153	167	41.0	41.9	0. 25	0. 24		
148 (実験後)	154	-	41.8	-	0. 24	-		

材齢 [日] 圧縮強度 [N/mm ²] ヤング係数 [kN/mm ²] ポアソン比 現場 簡易 封緘 現場 簡易 封緘 現場 簡易 封緘 現場 簡易 71 (実験前) 151 162 41.1 41.6 0.25 0.24 147 (147) 149 - 42.7 - 0.24 -	(a-2) 収縮低減剤あり								
材齢 [日] [N/mm ²] [kN/mm ²] 現場 簡易 現場 簡易 現場 簡易 封緘 断熱 封緘 断熱 封緘 断熱 71 (実験前) 151 162 41.1 41.6 0.25 0.24 147 (147) 149 - 42.7 - 0.24 -		圧縮強度		ヤン	ブ係数	ポアソン比			
日 現場 簡易 對緘 現場 簡易 對緘 現場 簡易 断熱 現場 簡易 断熱 71 (実験前) 151 162 41.1 41.6 0.25 0.24 147 147 149 - 42.7 - 0.24 -	材齢	[N/1	l/mm ²] [kN/mm ²]		′mm²]				
封緘< 断熱 封緘 断熱 封緘 断熱 71 (実験前) 151 162 41.1 41.6 0.25 0.24 147 149 - 42.7 - 0.24 -	[日]	現場	簡易	現場	簡易	現場	簡易		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		封緘	断烈	封緘	断烈	封緘	断烈		
	71 (実験前)	151	162	41.1	41.6	0. 25	0. 24		
	147 (実験後)	149	_	42. 7	_	0. 24	_		

(b) 鉃筋								
	降伏点	引張強さ	伸び	ヤング率				
	$[N/mm^2]$	[N/mm ²]	[%]	$[\times 10^5 \text{N/mm}^2]$				
D16 (USD685)	761	977	11.8	1.93				
D25 (USD685)	707	865	12.3	1.93				
U6. 4 (SBPD1275/1420)	1364	1423	7.8	2. 04				
U7. 1 (SBPD1275/1420)	1418	1483	8.2	2.14				

図-2 RC柱試験体

意した $100 \times 100 \times 400 \text{ mm}$ の角形コンクリート供試体を 用い,自由収縮を中央部に埋設した埋込型ひずみ計によ り計測した⁸⁾。角形供試体の養生は,打込みから脱型ま でを湿潤養生とし,材齢約 24 時間で脱型し,全面をア ルミ箔粘着テープでシールする 20℃封緘養生としてい る。同時に温度も測定し,実測ひずみから温度ひずみ(線 膨張係数を $10 \times 10^6 / C$ と仮定)を差し引いて自由収縮 ひずみを求めた。

コンクリートと鉄筋の強度試験結果を表-4(a)および (b)にそれぞれ示す。収縮低減剤を添加したことにより コンクリートの圧縮強度がわずかに低下している。以後 の検討で用いるコンクリートの単調加力圧縮強度 σ_B は、 実験前と実験後の現場封緘養生の結果の平均値として、 収縮低減剤なしの場合には 153 N/mm²,収縮低減剤あり の場合には 150 N/mm²を採用した。

2.2 加力·計測方法

無筋の試験体およびRC柱試験体の加力方法を前掲 の表-1 および表-2 に示す。繰返し加力の上限応力比 σ_{max}/σ_{B} を,無筋の試験体では 0.67~0.90, RC柱試験 体では 0.67~0.80 の範囲でそれぞれ変化させ,下限応力 比 σ_{min}/σ_{B} は 0.05 として全試験体共通とした。加力は 200 サイクルを上限とした三角波とし,それまでに破壊 しない試験体については引き続いて単調加力を行った。 RC柱試験体の繰返し加力時の応力速度は試験機の制 約から 1 N/mm²/sec.程度となっており,想定される超高 層建物の固有周期に対して載荷周期は極端に長いもの となっている。なお,無筋の試験体については,2 水準 の応力速度を採用してその影響を把握する計画とし,試 験体両面の縦ひずみを検長 60 mm のひずみゲージで計 測した。RC柱試験体については,前掲の図-2 に示し た位置で鉄筋とコンクリートのひずみを計測した。

3. 実験結果

3.1 収縮ひずみ

打設日から加力実験前までのRC柱試験体の主筋の 圧縮ひずみ変化を図-3に示す。養生条件や寸法・形状 がRC柱試験体と異なるため一概には比較できないが, 参考のため,角形供試体により計測したコンクリートの 自由収縮ひずみも同時に示す。

同一断面で比較して、収縮低減剤ありの試験体の方が 収縮低減剤なしの試験体より小さいひずみに収まって おり、収縮低減剤添加によりコンクリートの自己収縮が 低減され、コンクリートに作用する引張応力は小さくな っているといえる。

3.2 割裂強度

割裂強度(5 体の平均値)を収縮低減剤の有無,養生 条件,鉄筋量別に図-4 に示す。なお,同一条件の5 体 の試験体の割裂強度は平均値に対して 7~32%のばらつ きを有する。

鉄筋径が強度へ与える影響は明確ではないが,無筋の 試験体に比べて,鉄筋を有する試験体は強度が 5~31% 低下している。また,同じ養生条件,鉄筋量の試験体に おいて,収縮低減剤なしの場合よりも収縮低減剤ありの 場合の方が強度が若干高く,収縮によるひび割れや引張 応力が割裂強度へ与える影響を示している。なお,鉄筋 量や収縮低減剤の有無が割裂強度に与える影響の養生 条件による差異は明確ではない。

3.3 圧縮性状

(1) コンクリート試験体

無筋の試験体の繰返し圧縮実験結果について述べる。 σ_{max}/σ_{B} が0.85以下の試験体では全て200サイクルの繰 返し加力中に破壊は生じなかった。一方、 σ_{max}/σ_{B} が0.90 の場合、収縮低減剤なしの試験体は69サイクル目、収 縮低減剤ありの試験体は67サイクル目に破壊した。 σ_{max}/σ_{B} と破壊サイクル数nの関係を図-5に示す。図 中には、文献9)におけるnと σ_{max}/σ_{B} および σ_{min}/σ_{B} の 関係,

 $\log n = K \cdot (1 - \sigma_{\max} / \sigma_B) / (1 - \sigma_{\min} / \sigma_B)$ (1) を示す。なお,係数Kは,気中の普通コンクリートに用 いる 17を採用した。本実験では,式(1)により求められ るnと同程度の繰返しサイクル数で破壊している。

図-5 上限応力比-破壊サイクル数関係

繰返し加力中に破壊しなかった試験体の繰返し加力 後の圧縮強度 $\sigma_{TP} \ge \sigma_B$ の比 $\sigma_{TP}/\sigma_B \ge \Box - 6$ に示す。 σ_{TP} は σ_B に対して 1.0~1.1 倍程度で、本実験では繰返し 加力によるその後の圧縮強度低下は見られなかった。ま た、応力速度や収縮低減剤の有無が繰返し加力後の圧縮 強度に与える影響は確認されなかった。

応力比 σ/σ_B とひずみ ε の関係を包絡線で表示したも のを図-7(a)に、 σ_{max}/σ_B と累積ひずみ $\Delta \varepsilon$ の関係を図-7(b)に、 σ_{max}/σ_B と $\Delta \varepsilon/\varepsilon_1$ の関係を図-7(c)に示す。こ こで、累積ひずみ $\Delta \varepsilon$ は繰返し最終サイクルの上限応力 時ひずみ ε_{last} と1サイクル目の上限応力時ひずみ ε_1 の差 である。なお、各試験体のひずみは、2点のゲージのう ち、繰返し最終サイクルの上限荷重時ひずみが大きい方 の値を用いている。応力速度の影響は明確ではなかった。

収縮低減剤が破壊サイクル数へ及ぼす影響は小さい が、 ε_{last} や $\Delta \varepsilon$ は収縮低減剤ありの方が若干小さくなって おり、収縮低減剤添加により繰返し加力によるひずみの 蓄積が低減される傾向が確認できる。

繰返し加力中に破壊しなかった $\sigma_{max}/\sigma_B 0.85$ 以下の試 験体は、 σ_{max}/σ_B が大きくなるほど $\Delta \varepsilon$ および $\Delta \varepsilon/\varepsilon_1$ が 大きくなっている。また、上限応力比 $\sigma_{max}/\sigma_B 0.67$ の場 合では、収縮低減剤なしの試験体の $\Delta \varepsilon/\varepsilon_1$ 平均値は 0.15、 収縮低減剤ありの試験体では 0.13 となっており、共に低 い値で収まっている。

(2) R C 柱試験体

RCA シリーズの圧縮強度 σ_{RCA} および RCB シリーズの 繰返し加力後の圧縮強度 σ_{RCB} の σ_{B} に対する比 σ_{RCA}/σ_{B} および σ_{RCB}/σ_{B} を図-8 に示す。 σ_{RCA} および σ_{RCB} は,載荷軸力Nから主筋負担軸力 N_{s} を滅じて求め たコンクリート負担軸力 N_{c} を,コンクリートの断面積 で除して求めた。 N_{s} は主筋の応力ーひずみ関係を完全 バイリニアと仮定して,図-3 に示した収縮を考慮して 算出した。

RCA シリーズの単調加力における σ_{RCA}/σ_B は 0.85~ 0.92 の範囲にあり、収縮低減剤の有無や主筋比が圧縮強 度へ及ぼす影響は小さい。なお、RCA シリーズの全ての 試験体で、圧縮強度 σ_{RCA} が σ_B より小さくなっているが、 その低下率 σ_{RCA}/σ_B は、超高強度コンクリートの寸法効 果による強度低下率¹⁰ と同程度である。

RCB シリーズの繰返し圧縮実験の結果については、 σ_{max}/σ_{B} 0.67の試験体では 200 サイクルの繰返し加力中

には破壊は生じず, コンクリートのひび割れ, 剥落およ び主筋の降伏は確認されなかった。 $\sigma_{max}/\sigma_B 0.80$ の試験 体では収縮低減剤なしの場合には 138 サイクル目, 収縮 低減剤ありの場合には 59 サイクル目にかぶりコンクリ ートが破壊した。先述のように, 無筋の試験体では上限 応力比 0.80 の場合は繰返し破壊は生じておらず, R C柱 試験体の方が低い上限応力比で繰返し破壊する結果と なっている。繰返し中に破壊しなかった RCB-2 および RCB-5 の σ_{RCB} は, 同一条件の単調加力試験体 RCA-2 お よび RCA-5 の σ_{RCA} の 0.97 倍で, 繰返し加力がその後の 圧縮強度に与える影響は小さい。

上限荷重時のコンクリートと主筋の軸力負担割合 N_s/N および N_c/N の変化を RCB-5 を例にとって図ー 9 に示す。n が増すごとに N_c/N が減少し、 N_s/N が増 加している。また、これらの軸力負担割合の変化は初期 の繰返しサイクルのうちに顕著に見られる。

繰返し加力中に破壊した $\sigma_{max}/\sigma_B 0.80 \ \mathcal{O} \varepsilon_{last}$ や $\Delta \varepsilon$ は 無筋の試験体に比べて大きい。また,繰返し加力中に破 壊しなかった $\sigma_{max}/\sigma_B 0.67$ の試験体では収縮低減剤の有 無による ε_{last} や $\Delta \varepsilon$ の違いは顕著ではないが,繰返し加力 中に破壊した $\sigma_{max}/\sigma_B 0.80$ の試験体では収縮低減剤あり の場合よりも、収縮低減剤なしの場合の方が ε_{last} や $\Delta \varepsilon$ が 大きい。上限応力比 $\sigma_{max}/\sigma_B 0.67$ の試験体の $\Delta \varepsilon/\varepsilon_1$ は 0.12~0.20 であり、無筋の試験体と同様に、低い値に収 まっている。

4. まとめ

150 N/mm² 級の超高強度コンクリートを用いた無筋 コンクリート試験体およびRC柱試験体の多数回繰返 し圧縮実験を行い,以下に示す知見を得た。

- 短期許容圧縮応力度(2/3Fc)を上限応力とした繰返し圧縮実験では、いずれの試験体においても、200サイクルの繰返し圧縮により破壊は生じなかった。
 また、繰返し加力後の圧縮強度は単調加力圧縮強度と同程度であった。
- 短期許容圧縮応力度を上限応力とした場合,繰返し 圧縮によるコンクリートの 200 サイクル目の累積ひ ずみは、1 サイクル目のひずみに対しておよそ 20% 以下であった。
- 収縮低減剤添加により収縮ひずみは低減されるが、
 繰返し加力中に破壊する上限応力比および繰返し
 加力後の圧縮強度に及ぼす影響は小さかった。
- ・ 無筋の試験体では上限応力比 0.90, R C 柱試験体で は上限応力比 0.80 で繰返し加力中に破壊が生じ,繰 返し圧縮により破壊する上限応力比に違いが見ら れた。

図-10 応力比 - ひずみ関係(RCB シリーズ)

参考文献

- 日本建築学会:鉄筋コンクリート構造計算規準・同 解説,1999.11
- 2) 小坂 英之、山中 久幸:高強度コンクリートの高 応力下の低サイクル疲労について、高強度コンクリ ート構造物の構造性能研究委員会報告書・論文集、 日本コンクリート工学協会、pp.404-407、2006
- 西田 浩和,片寄 哲務,佐藤 幸博,寺岡 勝: 定荷重繰返し圧縮載荷を受ける高強度コンクリー トの損傷評価の試み、コンクリート工学年次論文集, Vol.28, No.1, pp.1181-1186, 2006
- 4) 佐藤 幸博,片寄 哲務,西田 浩和,佐々木 仁: 動的繰返し圧縮載荷を受ける高強度コンクリート の力学的性質に関する研究,日本建築学会大会学術 講演梗概集, C-2, pp.57-58, 2007
- 5) 長谷川 弘明,森 恭平,市岡 有香子,坂下 雅 信,河野 進,渡邉 史夫:100MPa を超える高強 度コンクリートの低サイクル疲労に関する実験的 研究,日本建築学会大会学術講演梗概集,C-2, pp.201-202,2008

- 6) 高森 直樹,林 和也,佐藤 幸博,佐々木 仁, 寺岡 勝:ひび割れ対策を施した超高強度コンクリ ートを用いたRC柱・梁接合部架構の実験的研究, 日本建築学会大会学術講演梗概集,C-2, pp.629-630, 2007
- 7) 片寄 哲務,高森 直樹,西田 浩和,寺岡 勝: 高強度コンクリートの若材齢時における力学特性 と自己収縮挙動,高強度コンクリート構造物の構造 性能研究委員会報告書・論文集,日本コンクリー ト工学協会,pp.416-425,2006
- 8) 黒岩 秀介,渡邉 悟士,陣内 浩,並木 哲: 150N/mm² 級コンクリートの自己収縮と拘束応力に ついて、日本建築学会大会学術講演梗概集,A-1, pp.389-390,2005
- 9) 土木学会:2007 年制定コンクリート標準示方書[設 計編], pp.37-38, 2008.3
- 10) 遠藤 芳雄,熊谷 仁志,塚越 英夫,三橋 博巳: 超高強度鉄筋コンクリート構造(Fc=120N/mm²)の 開発(その8中心圧縮実験),日本建築学会大会学 術講演梗概集, C-2, pp.453-454, 2002