# 論文 片側に設置するバットレスの強度・変形性状

神谷 和輝\*1・高橋 之\*1・市之瀬 敏勝\*2・小平 渉\*3

要旨:耐震補強において,敷地面積にゆとりの無い場合には,バットレス工法は採用しにくいという問題 がある。そこで本研究では,バットレスを片側に配置して補強する工法の開発を目的とし,バットレス単 体の耐力および変形性能を実験的に検討した。バットレスの耐力は,接合面の引張破壊,バットレスの曲 げ破壊およびせん断破壊を考慮した計算値とほぼ一致した。靱性指標は,計算値より大きな値となった。 バットレスと既存柱の接合面のせん断アンカー筋は,現行設計基準の要求量より少なかったが,接合面の ずれ破壊は生じなかった。

キーワード: 耐震補強, バットレス, 外付けブレース, 接合面, せん断アンカー筋

#### 1. はじめに

図-1のような細長い建物を外側から耐震補強をする 場合,長手方向には外付けブレースが有効になるが, 短手方向にはバットレスが有効である。ところが,現行 のバットレス工法は建物の両側にバットレスを配置する ことを原則<sup>11</sup>としているため,敷地面積にゆとりの無 い建物などはバットレスを配置しにくいという問題があ る。また,バットレス工法は既存躯体と補強体との接合 面で破壊が生じる恐れがあり,その場合には補強体が機 能しなくなるという難点がある。そこで,本研究では, 柱と補強体の接合面での破壊に留意しながら,バットレ ス単体の耐力および変形性能を得ることを目的として実 験的に検討を行った。

#### 2. 実験概要

#### 2.1 試験体形状

試験体は 1/3 の縮尺模型とした。試験体の形状を図-2 に示す。試験体は,既存躯体の柱と補強体で構成され ている。既存躯体の柱は,1958 年以前の既存不適格建 築物を想定し,せん断破壊先行型として設計した。低強 度コンクリート (Fc=11.5N/mm<sup>2</sup>)を用い,鉄筋は丸鋼と した。補強体は,加力直交方向の補強を想定した鋼板内 蔵型コンクリートの外付けブレース (200kN 相当)を取 り付けるためのコンクリート柱(以下外付けブレース) と,加力方向の補強を想定したバットレスから構成され る。

#### 2.2 試験体種類

試験体は計2体である。試験体パラメータを表-1に 示す。試験体 B-01W および試験体 B-02W はせん断アン カー量が異なっている。また,試験体 B-01W は,実際 の建物において下階壁抜けにより軸力が増加した状態を 模擬しており,軸力を270kN(=0.6bDo<sub>B</sub>)とした。試験体

\*1 名古屋工業大学大学院 工学研究科社会工学専攻 (正会員)

\*2 名古屋工業大学 工学部建築・デザイン工学科教授 工学博士 (正会員)

\*3 矢作建設工業(株)技術部 (正会員)



表-1 試験体パラメータ

| 試験体   | 形状              | せん断アン<br>カー筋本数 | 軸力<br>(kN) | 軸力比 |
|-------|-----------------|----------------|------------|-----|
| B-01W | 既存部柱(せん断柱)      | 24             | 270        | 0.6 |
| B-02W | +ブレース<br>+バットレス | 40             | 90         | 0.2 |

**B-02W** は長期荷重程度の軸力が作用している状態を模擬 しており,軸力を 90kN(=0.2bDo<sub>B</sub>) とした。

断面リスト,鉄筋引張試験結果およびコンクリート圧 縮試験結果を表-2~4に示し,試験体の配筋図(試験 体 B-01W)を図-3に示す。また,既存躯体と補強体の 接合は,梁部分の引張アンカー筋(2-D16,既存部への定 着長さ320mm)と柱部分のせん断アンカー筋(D6,表-1, 既存部への定着長さ60mm)により力を伝達させる。

| 表一2 断面リスト    |         |        |             |               |  |  |
|--------------|---------|--------|-------------|---------------|--|--|
|              | 補強部柱    | 補強壁    | 外付け<br>ブレース | 既存部柱          |  |  |
| 断面           |         | ·<br>· |             |               |  |  |
| $b \times D$ | 200×200 | 500×50 | 100×200     | 200×200       |  |  |
| 主筋           | 8-D10   | D6@100 | PL 6×140    | 4-φ13<br>4-φ9 |  |  |
| 帯筋           | D6@100  | D6@100 | φ 4@50      | φ3@100        |  |  |

| 種別  |        | 降伏強度<br>(N/mm <sup>2</sup> ) | 引張強度<br>(N/mm²) | 弹性係数<br>(×10 <sup>5</sup> N/mm <sup>2</sup> ) |  |
|-----|--------|------------------------------|-----------------|-----------------------------------------------|--|
| φ3  | SWM    | 607                          | 606             | 2.09                                          |  |
| φ4  | SWM    | 499                          | 524             | 1.95                                          |  |
| φ9  | SR235  | 346                          | 442             | 2.01                                          |  |
| φ13 | SR235  | 327                          | 438             | 2.05                                          |  |
| D6  | SD295A | 323                          | 506             | 1.87                                          |  |
|     | SD345  | 370                          | 529             | 1.76                                          |  |
| D10 | SD295A | 380                          | 522             | 1.84                                          |  |
| D16 | SD390  | 476                          | 623             | 1.91                                          |  |
| 鋼板  | SN400  | 366                          | 488             | 1.80                                          |  |

#### 表-3 鉄筋引張試験結果(3本平均)

表-4 コンクリート材料試験結果(3体平均)

| 位置  | 圧縮強度<br>(N/mm <sup>2</sup> ) | 弹性係数<br>(×10 <sup>4</sup> N/mm <sup>2</sup> ) |
|-----|------------------------------|-----------------------------------------------|
| 既存部 | 12                           | 2.54                                          |
| 補強部 | 39                           | 2.89                                          |

なお,試験体は,文献2)の実験で使用した1層1 スパンの既存躯体と補強体からなる試験体から切り 出したものである。文献2)の実験では,既存躯体の 柱梁接合部のみで破壊が進行し,それ以外の部位は軽 微なひび割れが入っただけであった。そこで,今回 は破壊の著しい接合部を撤去し,図-2(a)のような 加力用スタブを新設して試験体とした。

# 2.3 載荷方法

加力は油圧ジャッキを用いて前述の一定軸力を載

荷した後, 図-2(a)の加力用スタブに設置した油 圧ジャッキ(メインジャッキ)を用いて, 変位制御 による2回繰り返し正負交番加力とした。但し,試験 体B-01Wでは軸力が大きく, 試験体の強度が高いの で,メインジャッキだけでの加力をすると, 右方向 加力時に引張アンカー筋だけが降伏して, バットレ スの性能を知ることができない。そこで, 引張アン カー筋の降伏耐力の約2/3(150kN)までの加力をメイ ンジャッキ(図-4実線)で行い,それ以上の加力を 行う場合は補強部柱の柱頭に設置したサブジャッキ (図-4破線)を同時に使用して両側加力とした。

なお、本研究では、バットレスが引張られる方向(図-4右方向)に水平力が作用する場合を正載荷、バットレスが圧縮される方向(図-4左方向)に水平力が 作用する場合を負載荷とした。また、変位制御には既 存部柱で測定した層間変形(変位計 D1-D2)を用いた。

# 2.4 測定方法

試験体の伸縮量と既存柱と外付けブレースの接合面の はがれ・ずれ量を測定する。図-5に試験体に設置した 変位計の測定位置と変位計番号および変位計の節点番号 (A~H)を示し,図-6に接合面はがれ・ずれのイメー ジを示す。はがれは,水平力により接合面に引張力が生 じ,目開きすることであり,水平変位とする。ずれは,接 合面にせん断力が生じ,接合面が上下移動することであ り,鉛直変位とする。

試験体の伸縮の計測にはトランスデューサー型変位計 (Iシリーズ)を使用した。はがれおよびずれの計測には 変位計 I17 と 2 方向の変位を測定できる亀裂変位計(K シリーズ)を使用した。

# 3. 試験体の設計

#### 3.1 接合面の引張破壊(図-7(a))

接合面の引張破壊は,既存柱がせん断破壊をし, その



影響で水平力を負担した引張アンカー筋が降伏すると考 える。そこで,既存柱のせん断終局強度<sup>3)</sup>および引張 アンカー筋の降伏耐力を考慮し,下式により算定する。

$$Q_{tu} = a_t \cdot \sigma_y + Q_c$$

(1)

 $a_{t_{i}}\sigma_{y}$ : 引張アンカー筋全断面積および降伏強度

 $Q_c: 柱のせん断終局強度$ 

# 3.2 壁せん断破壊(図-7(b)(d))

壁のせん断終局強度は、下式の修正荒川 mean 式によ り算定する。ただし、正載荷の算定時は、軸方向応力 度( $\sigma_{0e}$ )を考慮しない。

$$Q_{su} = \left\{ \frac{0.068 \cdot p_{le}^{0.23} \cdot (18 + Fc)}{M/(Q \cdot l) + 0.12} + 0.85 \sqrt{p_{se} \cdot \sigma_{wy}} + 0.1 \cdot \sigma_{0e} \right\} \cdot b_e \cdot j_e$$
(2)  
$$f \geq f \gtrsim U \quad 1 \le M/(Q \cdot l) \le 3$$

 $p_{le}=100a_l/(b_e \cdot l):$ 等価引張鉄筋比

*a*<sub>t</sub>: 引張側柱の主筋全断面積

 $b_e = \sum A/l$ :等価壁厚

- $p_{se} = a_h / (b_e \cdot s) : 等価橫筋比$
- $a_h, s, \sigma_{wy}: 1$ 組の横筋の断面積,間隔および降伏強度  $\sigma_{0e}=N/(b_e \cdot l):軸方向応力度(負載荷時のみ考慮)$
- $j_e: 応力中心間距離(j_e=l_w とする)$
- 3.3 補強部柱側の壁曲げ破壊(図-7(c))

補強部柱側の壁曲げ破壊は,補強部柱主筋および壁縦 筋が曲げモーメントを負担すると考えられる。また,引 張側柱である補強部柱に軸力は負荷されないので,下式 により算定する。

$${}_{w}M_{u} = a_{t} \cdot \sigma_{sy} \cdot l_{w} + 0.5 \sum (a_{wv} \cdot \sigma_{wy}) \cdot l_{w}$$
(3)  
$$a_{p} \sum a_{wv} : 補強部柱主筋および壁縦筋の全断面積$$
  
$$\sigma_{sy}, \sigma_{wv} : 補強部柱主筋および壁縦筋の降伏強度$$

L: 両側柱の中心間距離

## 3.4 既存部柱側の壁下曲げ破壊(図-7(e))

既存部柱側の壁下曲げ破壊では,既存部柱と下部スタ ブの接合部および既存部基礎梁にせん断ひび割れが入る と考えられる。そこで,壁縦筋による曲げモーメントの 負担はないとし,既存部柱主筋,既存部基礎梁の下端 筋の折り曲げ定着部分およびあばら筋が曲げモーメント を負担するとする。また,引張側柱である既存部柱には 軸力が負荷されるので,下式により算定する。

$$M_{u} = {}_{c}a_{t} \cdot {}_{c}\sigma_{sy} \cdot {}^{l}_{w} + {}_{b}a_{t} \cdot {}_{b}\sigma_{sy} \cdot {}^{l}_{b}u_{} + {}^{w}a_{t} \cdot {}^{w}\sigma_{sy} \cdot {}^{w}{}^{l}_{w} + {}^{N} \cdot {}^{l}_{w}$$

$$\tag{4}$$

N:既存部柱の全軸力

- <sub>c</sub>a<sub>p</sub> <sub>c</sub>o<sub>sy</sub>:既存部柱主筋の全断面積および降伏強度
- <sub>b</sub>a<sub>p</sub> <sub>b</sub>σ<sub>sy</sub>:既存部基礎梁下端筋の折り曲げ定着部分の 全断面積および降伏強度
- "a<sub>p</sub> "σ<sub>sy</sub>:既存部基礎梁あばら筋の全断面積および降 伏強度
- *l<sub>w</sub>, <sub>b</sub>l<sub>w</sub>, <sub>w</sub>l<sub>w</sub>*:既存部柱,既存部基礎梁の下端筋の折り 曲げ定着部分およびあばら筋と補強部柱の



#### 中心間距離

以上の結果をまとめると表-5のようになる。各行で 最も小さい値(太線)で破壊することが想定される。



なお, 試験体 B-02W の負方向耐力  $Q_{su}$ =347kN によって 既存部柱と補強体の間に生じるせん断力は, 図-6の 寸法より (925mm/700mm)× $Q_{su}$ =459kN であり, 外側補強 マニュアル<sup>11</sup> で必要とされるアンカー量は 95 本となる。 これに対して試験体のアンカー本数 (表-1) は 24 本で あり, 必要量の 25% 程度となっている。

## 4. 実験結果

### 4.1 ひび割れ

文献2)の実験による試験体のひび割れを初期ひび割れ として図-8に示し,今回の実験による層間変形角-16× 10<sup>3</sup>rad 終了時の試験体のひび割れを最終ひび割れとして 図-9に示す。

試験体 B-01W の正載荷では,層間変形角 R=8×10<sup>3</sup>rad で補強部柱曲げひび割れが急激に増加し,R=12×10<sup>3</sup>rad でバットレスから既存部基礎梁までせん断ひび割れが繋 がった。また,既存部柱と外付けブレースの接合面でひ び割れが生じた。負載荷では,R=-8×10<sup>3</sup>rad で補強部柱 下部にせん断ひび割れが生じ,バットレスのせん断ひび 割れと繋がった。

試験体 B-02W の正載荷では, R=8×10<sup>3</sup>rad で補強部柱 曲げひび割れが増加した。また,既存部柱上部にせん 断ひび割れが生じ,バットレスのひび割れと繋がった。 R=12×10<sup>3</sup>rad でバットレスから既存部基礎梁までせん断 ひび割れが繋がった。負載荷では, R=-4×10<sup>3</sup>rad で既存



図-10 荷重変形関係

部基礎梁のコンクリートが剥落し始め, *R*=-12×10<sup>3</sup>rad で 既存部柱からバットレスまでのせん断ひび割れが繋がっ た。

# 4.2 荷重変形関係

荷重変形関係を図-10に示す。なお,図-10に記し た直線は表-5で算定した耐力である。また,靭性指標 Fは最大耐力の80%まで耐力低下したときの層間変形角 から求めた<sup>3</sup>。

試験体 B-01W の最大耐力は,正載荷および負載荷で 241kN(層間変形角 R=11×10<sup>3</sup>rad),-383kN(R=-8×10<sup>3</sup>rad) となり,図-7で算定した(c)補強部柱側の壁曲げ破壊 (213kN)および(d)壁せん断破壊(-347kN)と概ね一致し た。靱性指標は正載荷でF=2.5,負載荷ではF=1.5となり, 文献3)による計算値(正載荷2.0,負載荷1.0)より大きな 値となった。

試験体 B-02W の最大耐力は,正載荷および負載荷で 239kN(R=12×10<sup>3</sup>rad),-302kN(R=-12×10<sup>3</sup>rad) となり,図-7 で算定した(c)補強部柱側の壁曲げ破壊(213kN)および (e)既存部柱側の壁下曲げ破壊(-287kN)と概ね一致した。 靭性指標は正載荷でF=2.8,負載荷ではF=2.6となり,計 算値(正載荷 2.0,負載荷 1.5)より大きな値となった。

両試験体の最大耐力は, 正載荷はほぼ同程度であった が, 負載荷では試験体 B-01W がより大きな値を示した。 最大耐力後の耐力は, 正載荷で緩やかに減少したのに対 して, 負載荷では大きく減少した。また, 試験体 B-01W の耐力減少は試験体 B-02W よりも顕著であった。これは, 表-5 で示したように, 試験体 B-01W の負方向のせん 断強度が曲げ強度を下回ったことと対応している。

#### 4.3 接合面のはがれ・ずれ

はがれ幅 - 層間変形角関係を図-11に示す。縦軸に おいて正符号ははがれ幅を表し,負符号は試験体のめり こみ量を表す。

試験体 B-01W では,全体的に小さい値であったが,こ れは試験体を両側から加力したため接合部に生じる引張 力が低減したためである。正載荷では最大耐力以降,接 合面中央のはがれ幅が増大し上部よりも大きな値を示 した。これは軸力 0.6bDo<sub>8</sub> を負荷させたことと接合面中 央付近の既存部柱および外付けブレースにせん断ひび割 れが増加したことが影響したと考えられる(図-9(a))。 負載荷でも最大耐力以降,接合面中央のはがれ幅が増加 した。試験体 B-02W では正載荷で接合面上部でのはが れが顕著に見られた。それとは対照的に,中央・下部で のはがれはほとんど見られなかった。負載荷において も同様の傾向が見られた。最大耐力時のはがれ量は,両 試験体とも,接合面上部で見られ,試験体 B-01W では 0.7mm,試験体 B-02W では 2.5mm であった。

ずれ - 層間変形角関係を図-12に示す。図-6に示した矢印の向きのずれをそれぞれ正符号とした。

試験体B-01Wでは,全体的に負符号側に表れているが, これは軸力 0.6bDo<sub>B</sub> を負荷させたことにより既存部柱の 接合面が下方向へ移動したためと考えられる。正載荷で は最大耐力以降,接合面中央でずれが生じたが,接合面 下部ではほとんど生じなかった。これは最大耐力以降, 既存部柱および外付けブレースにせん断ひび割れが増加 したためと考えられる。負載荷でも正載荷と同様の傾向 があった。最大耐力時のずれ量は,試験体B-01Wでは, 接合面下部で-0.26mm,試験体B-02Wでは,接合面中央 で 0.09mmと, ごく僅かであった。

# 4.4 変形成分の分離

# (1) 分離方法

変位計の測定値から試験体の変形成分の分離を以下の ように行う。変位計番号と節点番号は図-5に記したも のと対応している。

・接合面はがれ成分

変位計 I17 の値を接合面はがれ成分とする。

・壁曲げ成分,壁下曲げ成分

曲げ成分による変形は,節点の鉛直方向の移動と考え る。図-13(a)に示すように線分 CG を境に上の変形成 分を壁曲げ成分とし,下の変形成分を壁下曲げ成分とす る。よって,壁曲げ成分はA, B, E, F 点の鉛直変位から 算出し,壁下曲げ成分はC, G 点の鉛直変位から算出する。 壁曲げ成分の算出を例に曲げ成分の算出方法を以下に示 す。

壁曲げ成分の算出は,

と

CおよびG点の水平変位・鉛直変位を零

と仮定する。まず,下段のみの変形を求める。

FG 間が *e<sub>FG</sub>* だけ伸びた状態を図-13(b) に示す。このと きの線分 BF および FG の傾きは,

$$\theta_F = e_{FG} / 650$$
 (5)  
なる。よって、E 点の水平変位  $\delta_F$ は、

$$\delta_E = \theta_F \times 1000 \tag{6}$$

となる。BC, EF, AB 間の変形も同様に算出し, それらの 足し合わせを壁曲げ変形成分とする。すなわち, 次式と



なる。  

$$\delta(壁曲げ) = \frac{1000}{650} (e_{FG} - e_{BC}) + \frac{500}{650} (e_{EF} - e_{AB})$$
(7)

壁下曲げ成分の算出は,

DおよびH点の水平変位・鉛直変位を零 と仮定し、同様の方法で算出する。すなわち、次式となる。

$$\delta($$
壁下曲げ) =  $\frac{1200}{650}(e_{GH} - e_{CD})$  (8)

・壁せん断成分

せん断成分による変形は,対角線方向の伸縮, *e*<sub>BG</sub> など により次式で求める。ここで, *α*, *β* は図-14 に記した角 度である。

$$\delta$$
(せん断・下段) =  $\frac{e_{BG} - e_{CF}}{2\cos\alpha}$  (9)

$$\delta$$
(せん断・上段) =  $\frac{e_{AF} - e_{BE}}{2\cos\beta}$  (10)

#### (2) 変形割合 - 層間変形角関係

変形分離結果を図-15に示す。試験体 B-01W の正載 荷(図-15(a))では,層間変形角  $R=4\times10^{-3}$ rad まではせ ん断変形の割合が大きいが, $R=8\times10^{-3}$ rad 以降は,壁曲げ 変形が卓越した。これに対し,負載荷(図-15(b))では  $R=-8\times10^{-3}$ rad(最大耐力時)までは,壁下曲げ変形が卓越 し,それ以降は,下段の壁せん断変形が卓越した。また,  $R=-8\times10^{-3}$ rad 以降は,壁曲げ変形がマイナスの値となる。 これは軸力 0.6bD $\sigma_B$  を負荷させたことにより EF 間が縮 んだためである。

試験体 B-02W の正載荷(図-15(c))では, R=4× 10<sup>3</sup>rad まではせん断変形の割合が大きいが, R=8×10<sup>3</sup>rad 以降,壁曲げ変形が卓越した。また,接合面はがれの割 合も層間変形角の増加とともに増加している。負載荷(図 -15(d))では, R=-12×10<sup>3</sup>rad(最大耐力時)までは,壁下 曲げ変形が卓越し,最大 80%となった。それ以降は,下 段の壁せん断変形の割合が卓越した。また, R=-8×10<sup>3</sup>rad を超えると試験体 B-01W と同様に壁曲げ変形がマイナ スの値となる。しかし,これは BC 間 が伸びたためであ る。

つまり,2つの試験体とも,**表-5**から予測されると おりの破壊性状であった。

#### 4.5 軸支持能力

正負交番加力終了後,既存部柱の軸支持能力を検証す るため,水平力を零とした状態,すなわち試験体 B-01W では層間変形角  $R=25\times10^3$ rad,試験体 B-02W では $R=-3\times$  $10^3$ rad で既存部柱に軸力を負荷した。試験体 B-01W は  $282kN(0.6bD\sigma_B)$ ,試験体 B-02W は  $257kN(0.5bD\sigma_B)$ の軸支 持能力が得られた。

## 5. おわりに

以下に,本研究で得られた成果を以下に要約する。

(1) 試験体の耐力と破壊形状は、本論で導出した壁曲げ 終局強度式およびせん断終局強度式で求めた値と概 ね一致した。また、靭性指標Fは計算値より大きな



図-15 変形割合-層間変形角関係

値となった。

- (2) 最大耐力時の補強部と既存部の接合面のはがれは 2.5mm 見られたものの,ずれは 0.26mm であった。せん断アンカー筋は現行の設計法で要求される量の 25% 程度であったが,補強体は十分機能した。
- (3) バットレスが引張られる載荷では、曲げ変形が卓越した。逆の載荷では、最大耐力以前は曲げ変形が卓越したが、最大耐力後はせん断変形が卓越した。

#### 参考文献

- 日本建築防災協会:既存鉄筋コンクリート造建築物の外側耐震改修マニュアル,2002
- (何庸ほか:片側に設置するバットレスを用いた RC 建物の耐震補強,日本建築学会東海支部研究報告集, pp.301-304,2008
- 3)日本建築防災協会:2001年度改正版 既存鉄筋コン クリート造建築物の耐震診断基準・同解説,2001