論文 超高強度繊維補強コンクリート及び高強度モルタルを充填部に用い た接合部のせん断性能に関する実験的研究

衣笠 秀行*1・向井 智久*2・白井 一義*3・福山 洋*4

要旨:超高強度繊維補強コンクリート(以下 UFC)で作成されたプレキャスト(以下, PCa)パネルを用いた鉄筋 コンクリート構造物の耐震補強方法の開発を目標に,このために必要な PCaUFC パネル接合部の力学的性能 に関する基礎データの収集及び評価方法の確立を試みた。接合部せん断実験を基に,UFC-UFC 及び UFC-高 強度モルタル接合面における,接合筋及びコッターのせん断耐力(接合筋のせん断降伏耐力とダウエル支圧 破壊耐力及び,コッターのシアオフ耐力と支圧耐力)に対する耐震改修指針¹⁾やプレキャスト指針²⁾に示され ている評価式の適用性の検討及び,より精度の高い評価式の提案を行った。

キーワード:耐震補強,超高強度繊維補強コンクリート,接合部,せん断伝達,ダウエル,コッター

1. はじめに

1995 年の兵庫県南部地震における地震被害の教訓か ら,近年,既存不適格建物の耐震診断・耐震補強が急ピ ッチで進められているが,公共建築物(特に,学校建築 物)と比較して,民間建築物では思うように耐震化が進 行していないのが現状である。

最近の地震被害から経済損失が注目を浴びるように なり,経済活動の場を提供する建築物としての民間建築 物の耐震性の重要性が指摘されている。一方で,民間建 築物の耐震補強は,補強後の機能性の維持,補強工事中 の業務継続や工事期間の許容限界,また,強く求められ る経済性など,公共建築物と比較し耐震補強に際して 様々な制約が存在する。民間建築物の耐震化率向上のた めには,建築計画学・建築構造学・経済学の観点からよ り効果的で効率的な耐震補強方法の開発が望まれる。

本研究は、高靭性で超高強度の繊維補強コンクリート (圧縮強度 200N/mm²、鋼繊維混入量2%(体積比),以下

「UFC」と呼ぶ)で作成されたプレキャスト(以下, PCa) パネルによる鉄筋コンクリート構造物の効果的な耐震 補強方法の開発を目標に,このために必要な PCa パネル 接合部の力学的性能に関する基礎データの収集及び評 価方法の確立を試みたものである。

2. PCaUFC パネル補強と接合部

開発目標としている耐震補強方法はPCaUFCパネルを 図-1 に示すように既存RC構造フレーム内に組み入れ, 図-2 に示す接合方法を用いることによって耐震性能の 向上を図るものである。この接合方法は既往の鉄骨枠組 みブレース補強等に使用されている間接接合を基にし

*1 東京理科大学 理工学部建築学科 教授 工博 (正会員) *2 独立行政法人 建築研究所 工博 (正会員) *3 太平洋セメント株式会社 中央研究所 工博 (正会員) *4 独立行政法人 建築研究所 工博 (正会員)

た接合方法であり、応力伝達は充填材料を介してアンカ 一筋・スタッド筋(以下,接合筋),また、コッターによ りせん断力の伝達を行う。接合部充填材料には UFC と高 強度無収縮モルタル(以下,高強度モルタル)を用い、 UFC を採用した場合には接合部補強用のスパイラル筋 はなしとしている。

充填性や収縮・養生の問題から,UFC の現場打設は難 しいとされているが,その力学的性能の高さから現場打 設による接合部への適用が有望と考えられ,施工性能を 含めた開発課題としている。これらの施工性能等につい ては別報で報告予定である。

補強計画を行う上で、せん断伝達性能が未知の、 PCaUFCパネルと充填部の間におけるスタッド筋・コッ ターによるせん断伝達挙動及び、充填部のせん断終局強 度等に関する基礎データ及び評価方法の確立が求めら れる。

3. 接合部要素一面せん断実験

3.1 実験の目的と試験体概要及び加力計画

一面せん断実験は UFC(PCa 部)-UFC(充填部)及び, UFC(PCa 部)-高強度モルタル接合面のせん断伝達挙動, 具体的には,接合筋及びコッターのせん断伝達能力を明 らかにすることを目的としている。

図-3 に加力装置及び試験体の概要を示す。接合面に 純せん断の繰り返し載荷を行い,せん断力と接合部せん 断変位(接合部のずれ)及び垂直変位(接合面の拡がり) の計測を行った。接合面に垂直に3本の接合筋(D19)が配 されており,コッターが設けられているものといないも のがある。なお,非常に大きなせん断変位における耐力 は設計上有効とは考えられないので実験で与えるせん 断変位を正負9mmまでとした。

図-3 載荷装置と試験体の概要

3.2 実験パラメータ

試験体一覧を表-1 に示す。実験パラメータは、境界 面の種類(UFC-UFC・UFC-高強度モルタル),接合筋の 埋め込み長さ・強度、コッターの形状・個数(表-4 参 照)である。表-2に使用材料の一覧を示す。PCa部UFC 及び高強度モルタルの強度はそれぞれ、おおよそ 200,100(N/mm²)である。また、充填部UFC は通常のUFC

(PCa 部 UFC) で行う工場における蒸気養生を行わず, 現場養生で到達する強度を想定して簡易な熱養生とし たものであり,強度は通常のUFCに対して 15%程度低 いものとなっている。

五 百萬所 克孜					
No	材料	<u>鉄筋強度</u> (N/mm ²)	接合筋埋め込み長さ	表面仕上げ	
S1-1				テフロン	
S1-2				平滑	
S1-3		SD245		平滑+円径コッター	
S1-4	UFC-UFC	30343	7da	平滑+矩形コッター	
S1-5	(充填部-PCa壁部)			平滑+矩形コッター	
S1-6				平滑+矩形コッター	
S1-7		SD685		テフロン	
S1-8		SD345	5da	テフロン	
No	材料	鉄筋強度 (N/mm ²)	接合筋埋め込み長さ	表面仕上げ	
S1'-1				テフロン	
S1'-2	三 武 府 エ 川	SD245		平滑	
S1'-3	「 南強度 に ル ア ル の の の の の の の の の の の の の の の の の	30343	7da	平滑+矩形コッター	
S1'-4				平滑+矩形コッター	
S1'-5		SD295		テフロン	

表-1 試験体一覧表

注: S-3,4,5,6 及び S1'-3,4 のコッターの形状・寸法・個数は表-4参照

表-2 使用材料の力学的特性

	接合筋	充填	真UFC	PCa	PCaUFC	
No	降伏応力度	圧縮強度	割裂強度	圧縮強度	割裂強度	
	N/mm ²					
S1-1	402	163	11.6	194	13.0	
S1-2	402	163	11.6	194	13.0	
S1-3	402	163	11.6	194	13.0	
S1-4	402	163	11.6	194	13.0	
S1-5	400	165	5.2	231	10.4	
S1-6	400	165	5.2	231	10.4	
S1-7	717	165	5.2	231	10.4	
S1-8	370	157	8.9	213	13.4	
	接合筋	高強度モルタル		PCaUFC		
No	降伏応力度	圧縮強度	割裂強度	圧縮強度	割裂強度	
	N/mm ²					
S1'-1	432	107	5.0	184	10.4	
S1'-2	432	107	5.0	184	10.4	
S1'-3	432	107	5.0	184	10.4	
S1'-4	432	84.4	5.6	184	10.4	
S1'-5	341	76.9	3.6	213	13.4	

4. 接合筋のせん断伝達挙動

接合筋によるせん断伝達耐力は,接合筋のせん断降伏 で決まる耐力(以下,接合筋せん断降伏耐力)と接合筋縁 の UFC あるいは高強度モルタルの支圧破壊で決まる耐 力(以下,ダウエル支圧破壊耐力)の2つが考えられる。

4.1 UFCに埋め込まれた接合筋のせん断伝達

図-4 に UFC(PCa 部)-UFC(充填部)接合面に接合筋を 配した S1-1,7,8 のせん断荷重-せん断変位関係を示した。 なお,接合筋以外の接合面はテフロンによって絶縁され ており,ここで得られたせん断耐力には接合面の固着耐 力等は含まれていない。

耐震改修指針¹⁾に示されている接合筋せん断降伏耐 力式(式(1))で計算される耐力は,S1-1,8 でそれぞれ,242.3, 223.2(kN)である。改修時に一般的に使用される材質 SD345 で埋め込み深さ 7da とした試験体 S1-1 及び,これ を基準に,埋め込み深さを 5da と短くした試験体 S1-8 は これら改修指針式(1)で計算される耐力にほぼ達してお り,これら試験体では接合筋せん断降伏で耐力が決定し たものと考えることができる。

(1)

ここで、 σ_{v} :降伏強度、a:接合筋断面積

 $Q = 0.7 \times \sigma_{\rm Y} \times a$

一方,材質をSD685とし強度を上げた試験体S1-7では, 式(1)で計算される耐力432.3 (kN)には達していないが, せん断変位9mm でなお荷重上昇の傾向があり,また, 復元力特性は安定した曲げ降伏型の履歴ループとなっ ていることから,ダウエル支圧破壊は発生しておらず接 合筋せん断降伏が支配的な安定的な挙動を示している と判断される。このことは,通常使用される変形量,材 質及び埋め込み深さの接合筋であれば,UFC(プレキャス ト部)-UFC(充填部)接合面の場合,ダウエル支圧破壊は発 生しないこと,また,SD685のような高強度鉄筋では式 (1)は通常使用される変形範囲では耐力を過大に評価す る傾向にあること,を示している。

4.2 高強度モルタルに埋め込まれた接合筋のせん断伝達

図-5にUFC(プレキャスト部)-高強度モルタル接合面 に接合筋を配した試験体 S1'-1,5 のせん断荷重-せん断変 位関係を示した。耐震改修指針式(式(1))で計算される耐 力は,S1'-1,5 でそれぞれ,260.5,205.5(kN)であり,実験 から得られたせん断耐力は計算された接合筋せん断降 伏耐力を大幅に下回っている。また,得られた復元力特 性はスリップ変形が大きく,かつ,せん断変位 3mm 付 近から耐力低下が発生しており,最大耐力は,接合筋せ ん断降伏ではなく,高強度モルタル側のダウエル支圧破 壊により決定したと考えられる。

ダウエル支圧破壊耐力の評価式として、耐震改修指針 ¹⁾には式(2),プレキャスト指針²⁾には式(3)が示されてい る。ただし、式(3)は「接合筋せん断降伏」と「ダウエ ル支圧破壊」が同時に進行した場合の耐力式である。

$$Q = 0.4\sqrt{Ec \cdot \sigma_B} \times a \tag{2}$$

$$Q = 1.65 \sqrt{\sigma_Y \cdot \sigma_B} \times a \tag{3}$$

ここで、 Ec, σ_{R} :高強度モルタルのヤング係数及び強度。

これらの耐力式から計算されるせん断耐力と実験値 とを比較した結果を表-3 に示した。計算値は、耐震改 修指針式で実験値の約3倍、プレキャスト指針式で実験 値の約2倍と、実験値を大きく上回っており、これらの 式をそのまま適用することは出来ないことが分かる。

この原因として、プレキャスト指針式では、純粋なダ ウエル支圧破壊の耐力評価式でないことや本実験はコ ンクリートではなく高強度モルタルであるなど適用範 囲外の計算となっていること、また、耐震改修指針式は、 John W.Fisher の行った鉄骨に取り付いたスタッドの押し 抜き実験³⁾を基に導き出されており、本実験の UFC-高強 度モルタル界面のダウエルとは異なる条件下で得られ たものであること、などが考えられる。

そこでここでは、杭の応力算定に用いられる弾性支承 梁理論⁴⁾を基に次の形でダウエル支圧破壊耐力を算出す ることを試みた。

 $Q = \ell_m \cdot d \cdot \sigma_B$ (4) ここで、d は接合筋直径、 ℓ_m は接合筋の曲げモーシトが最 大となる位置の接合面からの距離である。この式は支圧 面積を $\ell_m \cdot d$ 、その支圧面における高強度モルタルの強 度を σ_B としたものである。 $\ell_m \ge k_h$ の関係は弾性支承梁 理論から次のように与えられる。

$$\beta = \sqrt[4]{\frac{k_h \cdot d}{4EI}}$$
(5)
$$\beta = \frac{\pi}{4\ell}$$
(6)

ここで、EI は接合筋のヤング係数と断面二次モルト。また、 k_h (ここでは高強度モルタルの接合筋に対する水平剛性)と ℓ_m の関係が、実験から得られた最大せん断耐力 Q_{\max} と復元力特性をバイリニアモデル化した時の最大耐力到達時変形 δ を用い次のように得ることが出来る。

$$k_{h} = \frac{Q_{\max}}{3\ell_{m} \cdot d \cdot \delta}$$
(7)

 ℓ_m として初期値 30mm を仮定し、これら 3 つの式を用い た収束計算(ℓ_m を仮定->式(7)で k_h 計算->式(5)で β 計 算->式(6)で ℓ_m 計算,以下,式(7)に戻り繰り返し)を行 うことによって、SI'-1,SI'-5 試験体でそれぞれ、 ℓ_m とし て 33.25mm(1.75d)、35.91mm(1.89d)が得られ、安全側とな る前者を採用し、次式のダウエル支圧破壊耐力式を得た。

 $Q = 1.75 \cdot d^2 \cdot \sigma_B$ (8) 提案する耐力式から計算されるせん断耐力と実験値 とを比較し**表-3** に示した。計算値は、実験から得られ た耐力を比較的よく推定できていることが分かる。

試験体	実験値	耐震改修指針		プレキャスト指針		提案式	
	(kN)	計算値(kN)	実験/計算	計算値(kN)	実験/計算	計算値(kN)	実験/計算
S1'-1	161.1	620.0	0.3	302.7	0.5	203.1	0.8
S1'-5	150.9	536.9	0.3	228.0	0.7	146.1	1.0

5. コッターのせん断伝達挙動

5.1 せん断破壊性状

UFC(プレキャスト部)-UFC(充填部)接合面にコッター を設けた試験体 S1-5,6 のせん断荷重-せん断変位関係を, コッターを設けていない試験体 S1-2 と比較して図ー 6(1)に示した。なお, コッターは充填 UFC 側に設けてあ り, 各試験体のコッター形状及び個数は表-4 に示す通 りである。

コッターの破壊形式としては、図-7 に示すコッター のシアオフ破壊と、コッターから受ける圧縮力による支 圧破壊の2種がある。実験の結果 S1-6 ではシアオフ破壊, S1-5 では支圧破壊が確認された。

図-8(1)にUFC コッターの負担力の推移を示す。ここで、コッター負担力はコッター有り(S1-5,6)と無し(S1-2)の試験体の各変形ピーク時の耐力差として計算した。支 圧破壊の発生した S1-5 試験体ではコッター負担力が緩 やかに減少しているのに対して、シアオフ破壊した S1-6 試験体ではコッター負担力が変形ピーク 0.5mm から急 激に減少していることが分かる。

UFC(プレキャスト部)-高強度モルタル接合面にコッタ ーを設けた試験体 S1'-3,4 のせん断荷重-せん断変位関係 を, コッターを設けていない試験体 S1'-2 と比較して図 -6(2)に示した。なお, コッター(表-4 参照)は高強度 モルタル側に設けてある。

S1'-4 ではシアオフ破壊, S1'-3 では支圧破壊の発生が 確認された。コッターのない S1'-2 との耐力差で計算し た高強度モルタルコッターの負担力の両試験体におけ る推移はそれぞれ,図-8(2)に示すようになった。UFC コッターで見られたと同様に,シアオフ破壊した S1'-4 の負担力は,支圧破壊した S1'-3 のものより急激に失わ れる傾向にあることが分かる。

このときの接合筋のせん断力負担の推移をこれら試 験体と比較するため、せん断伝達が接合筋のみによって 行われる試験体 S1-1 と S1'-1 の結果を同図中に示した。 先に述べたように S1-1 では接合筋のせん断降伏, S1'-1 ではダウエル支圧で耐力が決まっており、前者がせん断 変位 9mmm で最大荷重となっているのに対して後者で は 3mm で最大荷重となっている。シアオフ破壊、支圧 破壊のいずれにおいても、コッター耐力と接合筋耐力の 単純な足し合わせはできないことが分かる。

5.2 コッターのせん断耐力

(1) シアオフ耐力

プレキャスト指針には式(9)に示すコッターのシアオ フ耐力式が示されている。これを用いてシアオフ破壊が 確認された試験体 S1-3,4,6 及び S1'-4 のシアオフ耐力を 計算し,実験から得られたコッター負担耐力(図-8参照) と比較し示したのが表-5 である。

図-6 せん断荷重-せん断変位関係

表-4 コッターの寸法及び設置個数

$$Q = 0.5\sqrt{\sigma_B} \cdot As \tag{9}$$

ここに、Asはシアオフ破壊せん断面積(図-7参照)。

計算値は、シアオフ耐力を(特に UFC 試験体 S1-3,4,6 において)過小評価する傾向にあることが分かる。プレキ ャスト指針式は普通強度(18~36N/mm²)のコンクリート を対象としており高強度モルタルは適用範囲外である こと、また、鋼繊維で補強され引張靭性の大きい UFC に対して精度が落ちるのは当然のことと言える。

そこで、モールの応力円を基に東ら ⁵によって提案された次式を用いてシアオフ耐力の評価を試みた。

$$Q = 0.5 \sqrt{\sigma_B \cdot \sigma_t} \cdot As \tag{10}$$

この評価式は引張強度の違いの影響を考慮できるこ とに特徴がある。この式によって計算した値を実験耐力 と比較し表-5 に示した。比較的の高い推定精度が得ら れていることが分かる。なお、S1-6 試験体で精度が低く なっているのは、この試験体の UFC 引張強度が通常のも のより低くなっていることが一要因と考えられる。本研 究では引張強度を割裂試験で得ているが、この試験法は 直接引張試験と比較しばらつきが大きく、このことが推

表-5 実験値と計算値の比較(シアオフ耐力)

試驗休	実験値	プレキャスト指針		評価式	
DAVEX PP	(kN)	計算値(kN)	実験/計算	計算値(kN)	実験/計算
S1-3	109	25.1	4.3	85.5	1.3
S1-4	97	23.0	4.2	78.4	1.2
S1-6	307	48.1	6.4	109.8	2.8
S1'-4	318	110.2	2.9	260.9	1.2

表-6 実験値と計算値の比較(支圧耐力)

試験体	圧縮強度 σb	支圧面積 Az	実験値	計算值 σb•Az	実験値
	(N/mm ²)	(mm ²)	(kN)	(kN)	即長店 \
S1-5	164.8	1500.0	301	247.2	1.2
S1'-3	106.9	1500.0	209	160.4	1.3

定精度に影響を与えている可能性がある。

(2) 支圧耐力

支圧破壊を起こした試験体 S1-5 と S1'-3 のコッター負 担耐力(図-8)と、プレキャスト指針で示されている次式 で計算される支圧耐力を比較して表-6に示した。

$$Q = \sigma_B \cdot Az \tag{11}$$

ここで、Azはコッター前面の支圧面積である。

表-6から式(11)は充填部 UFC 及び高強度モルタルで 発生する支圧破壊の耐力を精度よく評価できているこ とが分かる。適用範囲外であるにも係わらずプレキャス ト指針式がある程度の精度を与えたのは、支圧破壊がシ アオフ破壊と異なり引張強度の違いにあまり影響を受 けない破壊モードであることが考えられる。しかし、式 (11)の実験値に対する余裕度を、普通コンクリート・ UFC・高強度モルタルに適用した場合の間で比較するな ど、今後さらに検討が必要と思われる。

6. 接合部要素二面せん断実験

6.1 実験の目的と試験体概要及び加力計画

前章までPCa部と充填部の境界面におけるせん断伝達 能力について検討を行ってきた。ここでは、充填部のせ ん断伝達能力及び破壊挙動に関する基礎データを得る ために行った、充填部 UFC 及び高強度モルタルの2面せ ん断実験について述べることとする。

図-9 に試験体の概要を示す。加力装置は一面せん断 実験で使用したもの(図-3)と同じである。試験体は全部 で4体であり、一覧を表-7に示した。

高強度モルタルの2面せん断では、配筋と寸法を実充 填部に近いものとし、スパイラル筋が有るもの(S2-MS) と無いもの(S2-M)の2試験体とした(図-9(2)参照)。一 方、UFCでは、加力治具の強度等の関係で実サイズの充 填部の実験が困難であったので、せん断試験部分を十分 絞りせん断性状の分かりやすい縦横比1とし、実験のば らつきを考え同じ条件の試験体を2体(S2-U1,U2)作成し た(図-9(1)参照)。使用材料を表-8にまとめて示す。

6.2 実験結果及び考察

全ての試験体において充填部分を模した試験区間の 斜めひび割れが拡がるせん断破壊によって耐力が決定

図-9 試験体の概要

した。実験から得られた試験体 S2-U2 及び試験体 S2-MS のせん断荷重-せん断変位関係を図-10に示した。なお, S2-U1 は S2-U2 と, S2-M は S2-MS とほぼ同様のせん断 荷重-せん断変位関係となった。

高強度モルタル試験体 S2-MS では 0.2mm 程度の小さ なせん断変位において、せん断ひび割れが発生すると同 時に、急激に破壊が進行し耐力低下に至った。これに対 して、UFC 試験体 S2-U2 では、1mm 程度の変位で明確 なひび割れが確認された後、一時的に剛性が低下するも のの、その後回復し、2mm 程度の変形までせん断荷重が 増加しその後、急激な耐力低下に至った。鋼繊維補強さ れた UFC は高強度モルタルと比較し、ひび割れ発生後、 粘りのある破壊挙動を示すことが分かる。また、両者の せん断終局応力度を比較したのが表-9 であり、UFC で おおよそ 12N/mm²、高強度モルタルで(ハ^{*} イラル筋の有無に 関係なく)2.8N/mm² となっており、UFC は高強度モルタ ルの約4倍の耐力を発揮していることが分かる。

7. まとめ

PCaUFC パネルを用いた耐震補強における接合部せん 断伝達性能評価に関する次の知見を得ることが出来た。

①通常使用される変形量,材質,埋め込み深さの接合 筋であれば, UFC(PCa部)-UFC(充填部)間では, ダウエル 支圧破壊は発生せず, 接合筋せん断降伏で耐力が決定す る。②耐震改修指針式及びプレキャスト指針式は高強度 モルタルに埋め込まれた接合筋のダウエル支圧破壊耐 力を過大に評価する傾向にある。弾性支承梁理論に基づ き提案した評価式は比較的精度よく耐力を評価できた。 ③プレキャスト指針式は UFC 及び高強度モルタルのコ ッターシアオフ耐力を過小評価する傾向にある。一方, 東ら⁵による提案式で比較的よい精度の耐力推定ができ た。④コッターの支圧耐力はプレキャスト指針式で UFC 及び高強度モルタルともに精度のよい耐力推定が可能 であった。⑤UFCを使用することより、高靭性・高せん 断耐力(約 12N/mm²)の充填部とできる可能性がある。今 後の課題として、A.ここで得られた知見の本実験範囲を 越えての適用性, B.評価式が与える耐力が得られる変形

No	鉄筋径	充填部断面積	充填部高さ	本 插 如 廿 判	フパイラル族
INO	mm	mm²	(mm)	兀堤即竹杆	へハイノル励
S2-M	19	415 × 200	200	古改由エルカル	無
S2-MS	19	225×200	200	同独反てルダル	有
S2-U1	19	100×100	100	니다이(明提井寺)	無
S2-U2	19	100 × 100	100	UFU(现场打政)	無

表-8 使用材料の力学的特性

	接合筋	充填部材料		
No	降伏応力度	圧縮強度	割裂強度	
	N/mm ²	N/mm ²	N/mm ²	
S2-M	402	81	5.8	
S2-MS	432	107	5.0	
S2-U1	400	158	6.7	
S2-U2	400	158	6.7	

=	•		臣仁
-	-9	記録ホーテー	
~	-	HE WOOD IN HIS IS	20

No	最大荷重	充填部断面積	せん断終局応力度
NO	kN	mm²	N/mm^2
S2-M	231	415 × 200	2.8
S2-MS	124	225 × 200	2.8
S2-U1	121	100 × 100	12.1
S2-U2	137	100×100	13.7

レベルの定量化が挙げられる。

謝辞:本研究は(独)建築研究所の研究課題「耐震化率 向上を目指した普及型耐震改修技術の開発(H18-20)」 のRC造分科会(主査:勅使川原正臣)にて行われた。 また,東京鐵鋼株式会社及び高周波熱錬株式会社から材 料の提供を受けた。関係の皆様に謝意を表します。

参考文献

- 日本建築防災協会:既存鉄筋コンクリート造建築物の耐震 改修設計指針同解説 2001 年改訂版, 2001
- 日本建築学会:現場打ち同等型プレキャスト鉄筋コンクリート構造設計指針(案)・同解説(2002),2002
- J.G.Ollgaard, R.G.Slutter and J.W.Fisher: Shear Strength of Stud Connectors in Lightweight and Normal-weight Concrete, AISC ENG. JOURNAL, pp.55-64, Apr.1971
- 4) 中野克彦,松崎育弘:プレキャストRC部材接合面に おけるせん断抵抗要素の耐力累加方法,日本建築学 会構造系論文集 第550号 2001年12月
- 5) 東洋一, 磯健一, 大久保全陸:コンクリートのせん断 強度試験法に関する実験的研究, 日本コンクリート 工学協会年次大会論文集, 1巻0号, pp13-16, 1979
- 近藤誠一郎,北代尚稔ほか:UFCを用いたプレキャスト壁による耐震補強に関する実験的研究(その9,10)建築学会大会講演梗概集 C-2, pp803-806,2008.9