論文 自己充てん型高強度高耐久コンクリートの長期海洋曝露試験による 塩分浸透抵抗性に関する検討

佐藤 文則^{*1}·牛島 栄^{*2}·紙田 晋^{*3}·坂井 悦郎^{*4}

要旨:自己充てん型高強度高耐久コンクリートは、自己充てん性を有する粉体系高流動コンクリートの範疇 にあり、材齢 56 日の設計基準強度で 60N/mm²以上の高強度コンクリートである。水結合材比も小さく、緻 密であるため優れた塩分浸透抵抗性があると考えられる。著者らは、自己充てん型高強度高耐久コンクリー トの塩分浸透抵抗性を把握するため、鹿島灘の海浜で長期海洋曝露試験を9年に渡り実施してきた。今回、 曝露試験体を用いて塩分と細孔構造の分析を行い、自己充てん性高強度高耐久コンクリートの優れた塩分浸 透性能を確認したのでここに報告する。

キーワード:自己充てん型高強度高耐久コンクリート,塩分浸透抵抗性,細孔構造,長期海洋曝露

1. はじめに

著者らは、自己充てん型高強度高耐久コンクリート (以下S.Q.Cと称す)を対象として、これまで耐久性に関 する数々の試験を行い、各劣化因子に対する抵抗性につ いて検討してきた¹⁾。一連の耐久性に関する試験項目の 内、S.Q.Cの塩分浸透抵抗性を評価するため、長期海洋曝 露試験を鹿島灘の海浜で9年に渡り実施してきた。

S.Q.Cは、自己充てん性を有する粉体系高流動コンク リートの範疇に入り、設計基準強度(材齢56日)で 60N/mm²以上有する高強度コンクリートである。水結合 材比が小さく,硬化体が緻密であるため優れた塩分浸透 抵抗性を保有していることが予想される。

一方,これらの高強度領域のコンクリートに関して, 長期間に渡る実環境下の曝露試験データは少ないのが 現状であり,本試験結果はこの観点より貴重なデータで あると思われる。本報は,海洋曝露期間9年後のS.Q.Cの塩 分浸透抵抗性の結果について報告するものである。

2. 長期海洋曝露試験

S.Q.C の長期海洋曝露試験の内容を次に示す。

2.1 使用材料および配合

長期海洋曝露試験を行った S.Q.C の使用材料と配合を 表-1,表-2 に示す。配合の種類は,配合強度で 72N/mm² ~120N/mm²の4種類の S.Q.C と,比較用として 29N/mm² の普通コンクリートの計5種類とした。

2.2 海洋曝露試験体

海洋曝露供試体の形状寸法は,150×150×500mmの角 柱供試体とし,5 種類の配合を対象として作製した。供 試体の養生条件は,材齢7日で脱型し,その後養生温度20

*1 前田建設工業(株) 技術研究所主管研究員 (正会員)
*2 (株) ティーネットジャパン CS事業本部 技師長 工博 (正会員)
*3 住金鉱化(株) 技術部技術課 (正会員)
*4 東京工業大学教授 理工学研究科材料工学専攻 工博 (正会員)

±2℃のもとで水中養生7日間,気中養生42日間の計56 日間養生した。なお,海洋曝露供試体は,曝露期間中の塩 分浸透方向が1方向となるように,角柱供試体の一面(型 枠底面)を除きプライマー処理後,エポキシ樹脂により塗 装し遮塩した。

表一1 使用材料

2 2.1111								
材料種別	材料名および物性							
セメント	普通ポルトランドセメント[OPC] 密度:3.16g/cm3							
	低熱ポルトランドセメント[LC] 密度:3.26 g/cm ³							
	高強度・高流動コンクリート用ビーライトセメント							
	[BL] 密度: 3.20 g/cm ³							
混和材	フライアッシュⅡ種[FA]							
	密度:2.11 g/cm ³ ,比表面積: 3480cm ² /g							
	高炉スラグ微粉末[BS]72N/mm ² 用							
	密度:2.89 g/cm ³ ,比表面積: 5830cm ² /g							
	高炉スラグ超微粉末[BSS]120N/mm ² 用							
	密度: 2.91 g/cm ³ , 比表面積: 15000cm ² /g							
細骨材	川砂 表乾密度:2.54 g/cm ³ ,吸水率:2.70%,							
	粗粒率:2.61							
粗骨材	硬質砂岩 2005 砕石 表乾密度:2.54 g/cm ³ ,							
	吸水率:2.70%,実積率:60.1%							
混和剤	高性能 AE 減水剤 (ポリカルボン酸系)							
	AE 減水剤 (リク・ニンスルホン酸系)							

2.3 海洋曝露条件

海洋曝露供試体の養生終了後,海洋曝露を開始し曝露 期間は9年とした。海洋曝露場所は,茨城県鹿嶋市の工場 敷地内の飛沫帯である。飛来塩分量の測定結果は,ガー

表—2 コンクリートの配合

配合条件				単位量(kg/m ³)									
配	配	目	目	水	粗骨材	紿	水	セ	混	細	粗	高	AE
合	合	標	標	結	かさ	傦		×	和	傦	傦	性	剤
名	強	スラ	空	合	容積	材		ン	材	材	材	能	
	度	ンフ゜	気	材		率		Р				AE	
		70-	量	比								減	
												水	
												剤	
	(N/mm^2)	(cm)	(%)	(%)	(m^3/m^3)	(%)						$B^{*2}\times\%$	B* ² ×%
LC72	72	60	4.0	38.6	0.52	52.9	165	427	-	891	827	1.00	0.0020
FA72	72	60	4.0	34.9	0.52	50.0	165	378	95	809	827	1.25	0.0075
BS72	72	60	4.0	41.5	0.52	52.9	165	199	199	891	827	1.05	0.0025
BS120	120	65	3.0	22.0	0.50	47.2	165	675	75	681	795	1.75	0.0012
OPC29	29	12* ³	4.5	59.9	0.65	45.1	160	267	-	813	1034	0.25	0.0030

*1:結合材の種類 LC72:低熱ポルトランドセメント FA72:普通ポルトランドセメント+フライアッシュ BS72:普通ポルトランドセメント+高炉スラグ微粉末(BS) BS120:高強度・高流動用ビーライトセメント+高炉スラグ超微粉末(BSS) OPC29:普通ポルトランドセメント

*2B:セメント+混和材 *3:スランプの値を示す。

ゼ法で 0.177(0.028~0.423)mgNaCl/day/100cm² となって いる。飛来塩分の測定期間は,30 ヶ月である。また,曝露 鋼材の腐食状態を測定したところ,9年で腐食度 26.4mdd, 侵食度 0.125mm/year の腐食環境となっている。**写真-1** に海洋曝露状況を,**写真-2**に鋼材の腐食状況を示す。

2.4 試験項目および方法

図-1 に示す海洋曝露供試体作製から分析・測定まで のフローにしたがい,9 年間の海洋曝露終了後,海洋曝露 供試体を回収し次の測定を行った。

(1) 全塩化物イオン量の測定

全塩化物イオン量の深さ方向の分布を把握するため, 曝露供試体よりコアを採取し,コンクリート表面から深 さ方向に 10mm ピッチでコアをスライスした。その後, 各試料を JIS A 1154 に準拠して,電位差滴定法により全 塩化物イオン量の測定を行った。

(2) 細孔径分布の測定

コンクリートの塩分浸透抵抗性は、その空隙構造に大 きく関係していると思われる。そのため、水銀圧入法によ り各配合の細孔径分布の測定を行った。なお、水銀圧入 法では細孔構造のインクボトル効果を検討するため、低 圧および高圧でそれぞれ、2回加圧減圧を繰り返し、細 孔径分布を測定した⁴⁾⁵⁾⁶。分析位置は各配合とも表面か ら 30mm の表層部分とした。

(3) 中性化深さ

全塩化物イオン量の分布を評価する際,コンクリート の中性化による,塩分の濃縮現象が考えられるため,中性 化深さを測定した。中性化深さの測定は,採取コアの側面

飛来塩分量:0.028~0.423mg/dm²/day

写真-1 海洋曝露状況

写真-2 鋼材の腐食状況

にフェノールフタレイン 1%エタノール溶液を噴霧し,無 定色部分の距離をノギスにより測定した。

3. 試験結果および考察

3.1 中性化抵抗性

図-2 に各コンクリートの中性化深さ測定結果を示す。 図によれば,曝露期間 9 年後の中性化深さは最大で OPC29 で 3.3mm と小さな値を示している。これは海洋 曝露環境であり,曝露供試体内部が概ね湿潤状態に保た れており,細孔内の炭酸ガスの拡散速度が小さかったこ とが主な要因と思われる。全体の中性化深さは小さいが, コンクリート種類による中性化深さの違いを見ると, OPC29 に対して,S.Q.C は中性化深さが小さく,その優位 性が表れている。また,中性化は、コンクリートの極表面 部に留まっており,中性化による塩分濃縮現象に関して は,ほとんど考慮する必要がないと考えられる。

3.2 塩分浸透抵抗性

図-3 に全塩化物イオン量の測定結果を示す。図によれば OPC29 に対して,S.Q.C はコンクリート内部への塩 分浸透量は少なく,塩分浸透抵抗性が高い結果となって いる。また,高炉スラグ微粉末・フライアッシュを混和し た S.Q.C は塩分浸透量が少ない。これは混和材を混和し たことにより生成した水和生成物による塩化物イオン の固定と硬化体の緻密性によるものと思われる。特に高 炉スラグ超微粉末を混和した BS120 は,塩分浸透抵抗性 が著しく大きくなっていることが分かる。

図-3 全塩化物イオン量の分布

表-3 に全塩化物イオン量分布より算出した表面塩化 物イオン量と見掛けの塩分拡散係数を示す。図-4 に水 結合材比と塩分拡散係数の関係を示す。なお,図中にはコ ンクリート標準示方書[設計編]に示される拡散係数の予 測値も合わせて示した²⁾。

表-3	見掛けの表面塩化物イオン量と

温分批散除效						
配合	W/B	表面塩化物 イオン量	見掛けの 塩分拡散係数			
		C ₀ (kg/m³)	D _c (cm²/year)			
LC72	38.6	15.67	0.119			
FA72	34.9	25.80	0.031			
BS72	41.5	13.18	0.079			
BS120	22.0	46.83	0.019			
OPC29	59.9	8.14	0.623			

図-4 水結合材比と塩分拡散係数の関係

これらによれば,水結合材比が小さい程,塩分拡散係数 が小さく,見掛けの表面塩化物イオン量も大きくなる傾 向を示している。また,OPC29 に対して S.Q.C は,塩分拡 散係数が著しく小さく,塩分浸透抵抗性が非常に高いこ とが分かる。また,OPC29 も高炉セメントやシリカフュー ムを使用する場合の予測値に近い結果となっている。

表-3に示した見掛けの塩分拡散係数をもとに,フィックの拡散則により,コンクリートからの距離毎に全塩化物イオン量の経時変化を計算し,鋼材腐食発生限界濃度1.2kg/m³に達する期間を求めた。図-5 にその結果を示す。なお,コンクリート表面部の塩化物イオン濃度は,飛沫帯を想定し13kg/m³として試算した。

図より,各コンクリートの限界塩分量 1.2kg/m³ に達す るまでの期間をかぶり 10cm の場合で比較すると,OPC29

は約30年であるのに対して,S.Q.Cは約150年以上という 結果となっている。塩害環境下に代表される特に厳しい 環境条件において,S.Q.C が有効であることが分かる。

ただし,本試算結果はコンクリート標準示方書設計編 に基づいて、コンクリート表面塩分量を 13kg/m³一定で 試算したものである。図-3,表-3 から分かるように実 際の全塩化物イオン量は,13kg/m³を大きく上回っている 配合もある。したがって,塩害に対する照査を行う際に、 コンクリート表面の塩化物イオン量を過小評価し,塩分 浸透解析をしていることが考えられる。特に,フライアッ シュや高炉スラグ微粉末などの混和材を添加したコン クリートでは,混和材を混和したことにより生成した水 和生成物による塩化物イオンの固定の影響が加わると 思われ,この現象が顕著になると予想される³⁾。したがっ て,塩分浸透の予測解析を行う際には,コンクリートの種 類・配合に応じた,表面塩分量の設定が重要になると考え られる。

3.3 コンクリートの細孔構造

本検討では,水銀圧入法により水銀の細孔中への加圧 と減圧を繰り返し行い,1回目の加圧と2回目の加圧結果 からインクボトル細孔の影響検討を行った。図-6に,細 孔中への加圧と減圧を繰り返した場合の累積細孔容積 の変化のイメージを示す。図のように,1回目の加圧の後 に減圧しても全ての水銀は戻らず,その量がインクボト ル細孔量となる。逆に水銀の戻り量は,インクボトルを含 まない細孔容積と考えられ,空隙が連続的に繋がってい るものと考えられる⁴⁾⁵⁾⁶。

図-7に配合種類と総細孔容積との関係を示す。また、 図-8,図-9 に圧入1回目および2回目の細孔直径と細 孔容積の累積との関係を示す。

細孔直径 (µm)図一9 細孔直径と細孔容積の累計(圧入2回目)

これらより、1回目の圧入試験結果によれば、高炉スラ グ微粉末を混和したBS72,BS120は、他の配合に比べて 総細孔容積が小さく、LC72,FA72,OPC29は、ほぼ同程度の 総細孔容積となっている。総細孔容積の結果のみで判断 すれば、BS120,BS72,LC72,FA72,OPC29の順で緻密なコン クリートと言える。しかしながら、2回目の圧入試験結果 によれば、空隙が連続的に繋がっていると考えられる細 孔の累積量は、BS120,FA72,BS72,LC72,OPC29の順序で大 きくなっており、1回目の圧入試験結果と、その順序が異 なっていることが分かる。また、1回目と2回目の圧入結 果とも、細孔直径の分布をみると、OPC29は0.1~10µmの 細孔量が他の S.Q.C の配合に比べて多い結果となってい る。S.Q.C の中では,特に高炉スラグ微粉末を混和した BS72,BS120 が,0.1~10µmの細孔量が少ないのが特徴的 である。1回目と2回目の圧入試験による細孔量の変化 は,フライアッシュを混和したFA72が最も大きく,連続的 に繋がっていると考えられる細孔量は,高炉スラブ微粉 末を混和した BS72 と,ほぼ同じであると判断できる。

言い換えれば、フライアッシュを混和した FA72 は、イ ンクボトル細孔容積が、最も多いといえる。これはフライ アッシュのポゾラン反応による影響ではないかと推察 している。なお、総細孔容積に対する、連続的に繋がった 細孔量の割合は、図-10 のとおりである。これより、水結 合材比を小さくすること、およびフライアッシュや高炉 スラグ微粉末を混和することで、セメント硬化体中の連 続した空隙を減少できることがうかがえる。

3.4 細孔容積と塩分浸透抵抗性

コンクリートの塩分浸透現象は,細孔溶液中の塩化物 イオンの移動によると考えられる。したがって,コンクリ ートの塩分浸透抵抗性は,セメント硬化体中の空隙構造 の影響を強く受けると考えられる。本検討では,水銀圧入 法で得られたモルタル中の細孔量を,各コンクリートの 配合条件をもとに,単位ペースト当たりの細孔量に換算 して,コンクリートの塩分浸透抵抗性を評価した方が合 理的であると考え,塩分浸透抵抗性との関係を整理した。

表-4 に各配合の見掛けの塩分拡散係数と水銀圧入1 回目と2回目に得られた細孔容積の一覧を示す。また, 図-11 に単位ペースト当たりの細孔容積と見掛けの塩 分拡散係数との関係を示す。これらより,単位ペースト当 たりの細孔容積と見掛けの塩分拡散係数との関係は、1 回目加圧後に測定された総細孔容積との寄与率で 0.63, 2回目加圧後に測定された連続細孔容積との寄与率で 0.97 と高いことが分かる。すなわち,セメント硬化体中の インクボトル効果を考慮して,空隙が連続していると考 えられる細孔容積で評価した方が,コンクリートの塩分 浸透抵抗性を適切に評価できると考えられる。

	表面 塩化物 イオン量	見掛けの 塩分拡散 係数	総細孔容積 (×0.01cm³/cm³)					
配合	(kg∕m³)	(cm²/year)	1 回目 加圧後	2回目 加圧後	1回目 加圧後 単位ペースト 当たり	2回目 加圧後 単位ペースト 当たり		
OPC29	8. 14	0. 623	14. 24	5. 75	29. 46	11. 90		
LC72	15.67	0. 119	12. 98	4. 19	25. 93	8. 38		
FA72	25. 8	0. 031	13.64	3. 03	24. 84	5. 52		
BS72	13. 18	0. 079	10. 26	3. 31	20. 53	6. 62		
BS120	46. 83	0. 019	8.59	1. 76	13. 73	2. 81		

表-4 見掛けの塩分拡散係数と細孔容積一覧

図-11 単位ペースト当たりの細孔容積と 塩分拡散係数と関係

図-12 に水結合材比と単位ペースト当たりの細孔容 積との関係を示す。図によれば,水結合材比と単位ペース ト当たりの細孔容積との関係は,寄与率で 0.93 と非常に 強い一次の相関関係が認められる。したがって,本試験結 果の範囲ではあるが,式(1)により水結合比から,単位ペー スト当たりの細孔量を予測し,耐久性設計に必要な塩分 拡散係数を算定することができると考えられる。

$$Dc = 0.005 \cdot e^{0.3939(0.2379 \cdot W/C - 2.324)}$$

ここに
 $Dc : 見掛けの塩分拡散係数(cm2 / year)$
 $W / C : 水結合材比(%)$ (1)

4. 結論

長期海洋曝露試験による,自己充てん型高強度高耐久 コンクリートの塩分浸透抵抗性に関する検討で得られ た知見は以下のとおりである。

(1) 自己充てん型高強度高耐久コンクリートは、優れた

図-12 水結合材比と単位ペースト当たりの 細孔容積との関係

塩分浸透抵抗性を有していた。

(2) 加圧・減圧を繰り返して測定した水銀圧入法により 求めたセメント硬化体中の連続した空隙とコンクリ ートの塩分浸透抵抗性とは密接に関連していること を明らかにした。

なお、本長期曝露試験は,15年まで継続し,曝露期間の 増大に伴う塩分拡散係数の変化等を,試験体の細孔構造 の観点から,取りまとめる予定である。

本試験は S.Q.C 構造物開発普及協会耐久性部会活動の 一環として実施されたものであり,協会関係者の方々と 東京工業大学 杉山友明氏に深く感謝いたします。

参考文献

- 自己充てん型高強度高耐久コンクリート構造物設計・施工指針(案),社団法人土木学会,2001
- コンクリート標準示方書 設計編 2007 年度制定,社 団法人土木学会,2007
- 3) 石田哲也,丸屋 剛,宮原茂禎:高炉スラグとポゾランを使用したセメント硬化体の塩分平衡特性,コンクリート工学年次論文集,Vol.27,No.1,pp673-678,2005
- 4) 坂井悦郎,春日貴行,浅賀喜与志,大門正機:分散剤を 添加したセメントの水和と硬化体の微細組織,コン クリート工学年次論文,Vol.25,No.1,pp197-202,2003
- 5) 吉田 行,名和豊春,田口史雄,渡辺 宏:高炉スラグ 微粉末を用いたビーライトセメントコンクリート の中性化に及ぼす細孔組織の影響,土木学会論文 集,Vol.64,No.1,pp1-15,2008.1
- 6) 岸 利治,吉田 亮:硬化セメントペーストが内包する複数のインクボトル幾何構造に関する研究,生産研究,60巻5号,pp122-125,2008