# 論文 未崩壊層を有する RC 造梁降伏型フレーム構造の必要保有水平耐力算 定用崩壊形及び応力に関する研究

和泉 信之\*1·相羽 均修\*2·秋田 知芳\*3

要旨:一般の建築物の必要保有水平耐力は,崩壊メカニズム形成時の部材応力などから計算されるが,中高 層 RC 造フレーム構造の静的非線形解析では,大変形時においても上層階などは崩壊メカニズムを形成しな いことが多い。そのため,未崩壊層を有する梁降伏型フレームについて崩壊指標を用いた必要保有水平耐力 算定時の崩壊形及び部材応力の推定方法を提示する。次に,未崩壊層の降伏耐力が異なる 10 階建梁降伏型 RC 造フレーム構造を対象に静的非線形解析を行い,降伏の進展に伴う崩壊メカニズムの形成状況や部材応力 の変化などを考察し,崩壊指標を用いた部材応力の推定方法の妥当性などを検証する。 キーワード:鉄筋コンクリート造建築物,フレーム構造,耐震構造,保有水平耐力,静的非線形解析

# 1. はじめに

高さ 60m 以下の鉄筋コンクリート造(以下, RC 造と 呼ぶ)建築物における耐震設計ルート3では,保有水平 耐力が必要保有水平耐力以上であることを確認する<sup>1)</sup>。 保有水平耐力は,建築物が崩壊メカニズムを形成する場 合において,各階の柱,耐力壁などが負担する水平せん 断力の和として求める。また,必要保有水平耐力の計算 に用いる構造特性係数は,崩壊メカニズム形成時の部材 応力などから計算される。従来,保有水平耐力計算には, 節点振り分け法や仮想仕事法が用いられてきた。節点振 り分け法では外力分布との整合が,仮想仕事法では部材 応力の計算が課題とされてきた。そのため,最近では, 荷重増分法による静的非線形解析が原則として用いら れる。したがって,保有水平耐力の確認には,静的非線 形解析により崩壊メカニズムが形成され,各階ごとに崩 壊形に達する時の部材応力を求めることが必要である。

柱と梁から構成される RC 造フレーム構造では、倒壊 に対する耐震安全性が高い梁曲げ降伏型全体崩壊メカ ニズムを計画することが望ましい<sup>2)</sup>。しかし、通常の中 高層 RC 造フレーム構造を対象とした静的非線形解析で は、上層、あるいは下層の層間変位が中間層に比べてあ まり進展しないため、解析終了時に全体崩壊メカニズム を形成しないことが多い(図-1)。解析終了時に想定 した崩壊メカニズムを形成していない階(以下、未崩壊 層と呼ぶ)が存在する場合には、崩壊メカニズム時の部 材応力を求めることができないため、構造特性係数が決 まらず必要保有水平耐力を算定することができない。

この未崩壊層の応力推定方法には,解析終了時の応力 と部材耐力から判定する方法などが提案されている<sup>1)</sup>。 この方法では、未崩壊層において節点まわりの柱や梁の なかで耐力と応力の比が最小となる部材が耐力に達し た状態を仮定して節点まわりの柱や梁の応力を推定す るため、得られた応力分布は当初用いた外力分布とは整 合しない。また、この方法の適用条件は、大半(例えば 70%以上)の階で主要部材に塑性ヒンジが生じており、 層間変形角も1/50を超えていることである。この条件は、 RC 造フレーム構造の静的非線形解析において解析終了 時の目安とはなるが、崩壊メカニズムの形成との関係が 明瞭でない。このように静的非線形解析の解析終了時に おいて未崩壊層を有する RC 造フレーム構造について、 外力分布と整合するともに解析終了時の応力から崩壊 メカニズム時の応力を推定する方法が求められている。

そこで、本研究では、まず、未崩壊層を有する梁降伏型フレームについて崩壊指標による必要保有水平耐力 算定時の崩壊形及び部材応力の推定方法を提示する。次 に、10 階建梁降伏型 RC フレーム構造を対象に静的非線 形解析を行い、この推定方法の妥当性などを検討する。



\*1 千葉大学 大学院工学研究科建築・都市科学専攻教授 博(工) (正会員)
\*2 千葉大学 工学部デザイン工学科
\*3 千葉大学 大学院工学研究科建築・都市科学専攻助教 博(工) (正会員)

#### 2. 梁降伏型フレームの崩壊指標

# 2.1 崩壊メカニズムと崩壊指標

本研究では, RC 造フレーム構造の梁降伏型全体崩壊 メカニズムを対象として,4 タイプ(図-2)を想定す る。なお、中間階の柱が降伏する部分崩壊メカニズムは 対象としない。静的非線形解析における水平力の増加に 伴う崩壊形の形成状況を表す指標として,全体崩壊率及 び層崩壊率の2つの崩壊率を用いる。また,各層の崩壊 状況に関する高さ方向のバランスを表す指標として,層 変形比及び層崩壊比の2つのバランス比を用いる。

#### 2.2 全体崩壊率と層崩壊率

全体崩壊率(α)は、静的非線形解析のある荷重ステ ップにおいて図-2に示す想定した塑性ヒンジ位置で 発揮される曲げモーメントの総和を塑性ヒンジにおけ る終局曲げモーメントの総和で除した比率とする。一方、 層崩壊率(β)は、静的非線形解析のある荷重ステップ において想定した塑性ヒンジ位置で発揮される曲げモ ーメントの層ごとの総和を塑性ヒンジにおける終局曲 げモーメントの層ごとの総和で除した比率とする。つま り、全体崩壊率は全体崩壊メカニズムの形成程度を表す 指標であるのに対して、層崩壊率は層ごとの塑性ヒンジ の発生状況を表す指標である。

# 2.3 層変形比と層崩壊比

層変形比(γ)は、荷重ステップにおける最大層間変 形角を全体変形角で除した比率とする。その際、全体変 形角は、水平力の重心に相当する床の水平変形をその床 の高さで除した変形角とする。一方、層崩壊比(η)は、 ある荷重ステップにおける最小層崩壊率を層崩壊率の 平均値で除した比率とする。したがって、層変形比は、 層別の変形角のバランスを示し、特定層への変形の集中 程度を表す。これに対して、層崩壊比は層の崩壊率のバ ランスを示し、全体的な崩壊の進行程度を表す。

# 3. 擬似全体崩壊メカニズムと応力推定

# 3.1 基本的な考え方と検討の流れ

未崩壊層を有する梁降伏型フレームの構造特性係数 (Ds)の算定には、まず、想定される全体崩壊メカニズム(以下,擬似全体崩壊メカニズムと呼ぶ)を決めて、 次に、メカニズム形成時の応力を推定し、梁降伏型の崩 壊形を確定する必要がある。その検討の流れを図-3に 示す。擬似全体崩壊メカニズムは、4 つのメカニズムの 中から形成度合の大きいタイプを選択する。擬似全体崩 壊メカニズム形成時の部材応力(以下,擬似崩壊応力と 呼ぶ)は、設計者が指定する Ds 算定時解析ステップの 応力(以下,Ds 算定時応力と呼ぶ)から推定する。この 擬似崩壊応力に対して非ヒンジ部材の必要耐力余裕度 を考慮して崩壊形を確定する。





図-4 未崩壊層を有するフレーム構造の C<sub>B</sub>-R<sub>T</sub>関係

#### 3.2 擬似全体崩壊メカニズムの選択

擬似全体崩壊メカニズムは,解析終了ステップの全体 崩壊率が最も大きいタイプとする。なお,最上階では, 柱頭部と梁端部の耐力に応じて柱頭あるいは梁降伏の 混在を認め、塑性ヒンジ位置を適宜修正してもよい。

#### 3.3 応力の推定方法

未崩壊層を有する梁降伏型フレームにおけるベース シア係数(C<sub>B</sub>)と全体変形角(R<sub>T</sub>)の関係について概念 図を図-4に示す。ここで、S点はDs算定時解析ステッ プ、E点は解析終了ステップである。M点は擬似全体崩 壊メカニズム形成に対応する仮想点である。全体崩壊率 (α)は、崩壊メカニズム時に対するモーメント比であ るので、その逆数(1/α)を用いて擬似全体崩壊メカニ ズム時の応力を推定する。すなわち、擬似崩壊応力は、 Ds算定時応力にDs算定時解析ステップにおける全体崩 壊率の逆数(1/α<sub>s</sub>)を乗じて算定する。なお、全体崩壊 率は、仮想仕事法におけるある荷重ステップの全体崩壊 メカニズム形成時に対する内力の仕事量の比率にほぼ 等しく、変形増大に伴う応力分布が変化しない場合には、 精度の良い応力推定が可能であると考えられる。

擬似崩壊応力=Ds 算定時応力×(1/α<sub>s</sub>) (1) 崩壊形の確定方法

# 3.4 崩壊形の確定方法

擬似全体崩壊メカニズムにおける崩壊形は,擬似崩壊 応力に対して非ヒンジ部材の耐力が設計者の指定する 必要耐力余裕度を満足することにより確定する。

#### 4. 解析計画

# 4.1 解析目的

本解析は、未崩壊層が存在するフレーム構造の応力の 推定精度を検討することを目的とする。具体的には、(1) 式により解析中間ステップA点(図-4)の応力から推 定した解析終了ステップE点の応力(応力E1)を解析値 (応力E)と比較することにより、推定精度を検討する。

応力 E1=応力 A× ( $\alpha_{\rm E}/\alpha_{\rm A}$ ) (2)

#### 4.2 解析対象フレームと解析ケース

解析対象フレームは、10 階建 RC 造建築物の桁行方向 の純ラーメン構造である(図-5)。部材断面としては、 5 つのケースを計画する。基本のケース1では、梁曲げ 降伏型全体崩壊メカニズムの必要保有水平耐力(構造特 性係数 Ds は 0.30)を満足する部材断面とする(表-1)。 ケース1以外では、崩壊層及び崩壊時の変形が異なるよ うに、梁耐力を増大させる。ケース 2A 及び 2B では、上 層 8~R 階の梁耐力を,ケース 3 A 及び 3B では、上層 8 ~R 層に加え下層 2~4 階の梁耐力を増大させる。具体的 には、部材の断面寸法は一定として、梁の主筋種別をケ ース 2A 及び 3A では SD490、ケース 2B 及び 3B では SD590 とする。これにより、梁曲げ終局強度は、ケース 1 に比べてケース 2A 及び 3A では約 1.25 倍、ケース 2B 及び 3B では約 1.50 倍に増大することになる。なお、非 ヒンジ柱は降伏しないように主筋強度を適宜増大する。



図-5 解析対象建築物の略伏図と略軸組図

表-1 柱及び梁断面

| (a)柱断面表   |                      |          |              |          |            | (b)大梁断面表         |              |                  |          |               |
|-----------|----------------------|----------|--------------|----------|------------|------------------|--------------|------------------|----------|---------------|
| 階         | 符号                   | C1       | C2,          | C3       | C4         | 階                | 符号           | G1(A)            | Gź       | <u>2(A)</u>   |
| 10        | 断面                   | 750      | 750          |          | 750        | [Fc]             | רי ניו       | 両端               | 外        | 内             |
|           | 主筋                   | 16D32    | 14D32        |          | 16D32      | R                | 断面           | 500 × 750        | 500      | <u>× 750</u>  |
| 9         | 新面                   | 800      | 800          |          | 800        |                  | 노            | (5)6D29          | 5        | <u>5D29</u>   |
|           | 主笛                   | 16D35    | 14           | )35      | 16D35      | [30]             |              | (5)6D29          | 5        | 5D29          |
| 8         | 上加                   | 800      | 800          |          | 800        | 10               | 断面           | 500 × /50        | 500      | × / 50        |
|           | 前田                   | 16020    | 1 4 5        | 20       | 16020      | [00]             | 두            | 5029             | 4        | 4D29          |
|           | 土肋                   | 10030    | 14038        |          | 10030      | [30]             | 王王           | 3D29             | 4<br>500 | 4029<br>x 750 |
| 7         | 町山                   | 1000     | 800          |          | 1000       | 9                | 西<br>王       | 500 × 750        | (4)5     | 5032          |
|           | 土肋                   | 16D38    | 14L          | )38      | 16D38      | [36]             | ÷            | 5032             | 4/5      | 5032          |
| 6         | 断面                   | 800      | 800<br>14D38 |          | 800        | 8                | 新面           | 550 x 750        | 550      | x 750         |
|           | 主筋                   | 16D38    |              |          | 16D38      |                  |              | 6D32             | (4)5     | 5D32          |
| 5         | 断面                   | 850      | 850          |          | 850        | [36]             | Ť            | 5D32             | 4        | 5D32          |
|           | 主筋                   | 16D38    | 14D38        |          | 16D38      | 7                | 新面           | $550 \times 750$ | 550      | × 750         |
| 4         | 断面                   | 850      | 850          |          | 850        |                  | Ŀ            | 6D35             | (5)6     | 6D35          |
|           | 主筋                   | 16D38    | 14D38        |          | 16D38      | [42]             | 下            | 6D35             | 4        | 6D35          |
| 3         | 断面                   | 850      | 850          |          | 850        | 6                | 断面           | 550 × 750        | 550      | ×750          |
|           | 主筋                   | 16D38    | 14F          | )38      | 16D38      | 0                | ᅬ            | 7D35             | (5)6     | 7D35          |
| 2         | 上方                   | 850      | 850          |          | 850        | [42]             | ٢            | 7D35             | 4        | 7D35          |
|           | 山田                   | 16039    | 14039        |          | 16029      | 5                | 断面           | $550 \times 800$ | 550      | <u>× 800</u>  |
| 1         | 工加                   | 050      | 850          |          | 050        | [42]             | 上            | 7D35             | 6        | 7D35          |
|           | 的国                   | 10000    |              |          | 10020      |                  | 下            | 7D35             | (4)5     | 7D35          |
|           | 土肋 16D38 14D38 16D38 |          |              |          |            | 4                | 断面           | 600 × 800        | 600      | <u>× 800</u>  |
| (c)基礎梁断面表 |                      |          |              |          |            |                  | 上            | (6)7D38          | (5)6     | <u>7D38</u>   |
|           |                      |          |              |          |            | [48]             | T.           | (6)7D38          | (4)5     | 7D38          |
| 階         | <u>**</u>            | G1(A)    |              | G        | i2(A)<br>内 | 3                | 断面           | $600 \times 800$ | 600      | × 800         |
| [Fc]      | 付方                   | 両端       |              | 外        |            |                  | - <u>+</u> - | (6)/D38          | (5)6     | 7D38          |
| 基礎        | 新面                   | 850 x 20 | 200          | 850      | × 2900     | <u>[48]</u><br>2 |              | (b)/D38          | (4)6     | V 000         |
|           |                      | 6036     |              | <u>a</u> | 6D35       |                  | 町面           | 6 D 2 0          | (5)0     | <u>~ 000</u>  |
| [26]      | ┝╧┤                  | 6030     | :            | 9        | 6025       | [40]             | 누            | 6-D38            | (5)6     | 6D38          |
| [ 30 ]    |                      | 0030     |              | 9        | 0000       | L40              |              | 0-030            | 4        | 0D38          |

注) 主筋種別: SD390(ケース1以外は本文中の特記による) コンクリートの設計基準強度: Fc表示(N/mm<sup>2</sup>) 柱コンクリート: Fcは上階の梁に同一とする。

#### 4.3 解析方法

解析は,部材の非線形特性に立脚した荷重増分法によ る立体フレーム静的非線形解析である。柱及び梁の部材 モデルは建築構造設計で一般的に採用される材端ばね モデルとして、曲げに対するスケルトンカーブは曲げひ び割れ、曲げ降伏を考慮するトリリニア型(図-6)と する。各折れ点の値は建築構造設計で慣用的に用いられ る算定式 1)により求め、降伏点剛性低下率は菅野式 3)に よる。また, 柱には曲げ軸力相関関係(曲げ降伏点は各 ステップの曲げと軸力の値と増分比により曲げ軸力相 関曲線から推定)を考慮し,床は剛床と仮定する。水平 力分布は、保有水平耐力計算の法規定で要求されている Ai分布<sup>1)</sup>として一定とし,解析は全体変形角が最大 1/33 程度に相当する荷重ステップまで実施する。



図-6 部材の曲げに対するスケルトンカーブ

Q(MN)

40

30

20

10

0

0

8F

OF







#### 5.1 荷重変位関係と崩壊メカニズム

層せん断力(Q)と層間変形角(R)の関係の例を図-7. 解析終了時の崩壊メカニズムの例を図-8に示す。 ケース 2B や 3B では、ケース1に比べて中間層の変形角 の進展が大きい。また、各ケースとも全体崩壊メカニズ ムは形成しておらず、未崩壊層が存在している。

#### 5.2 代表荷重変位関係

ベースシア係数(C<sub>B</sub>)と全体変形角(R<sub>T</sub>)の関係を図 -9に示す。解析終了時のC<sub>B</sub>は0.36(ケース1)~0.46 (ケース 3B), R<sub>T</sub>は全ケースとも 1/33 程度であり, R は 最大 1/29 (ケース 1) ~1/23 (ケース 3B) である。



注)●:塑性ヒンジの形成位置を示す。

図-8 解析終了時の崩壊メカニズムの例

Δ



#### 5.3 擬似全体崩壊メカニズムと全体崩壊率

擬似全体崩壊メカニズムは、全ケースとも全体崩壊率 ( $\alpha$ )が最大となる A タイプであり、 $\alpha$ は A タイプの値 を示す。A タイプの全体崩壊率( $\alpha$ )と全体変形角( $R_T$ ) の関係を図-10に示す。全ケースとも  $R_T$ の増大に伴い、  $\alpha$ が増大しており、解析終了時の $\alpha$ は、0.92(ケース 2B) ~0.98(ケース1)である。 $R_T$ が約1/67時において、 $\alpha$ は、ケース1では 0.96、ケース 2A では 0.93 で 0.9 を超 えているが、ケース 3B では 0.87 である。

# 5.4 層変形比と層崩壊比

層変形比( $\gamma$ )と全体変形角( $R_T$ )の関係を図-11に 示す。ケース1では、 $\gamma$ は $R_T$ の増大に関わらず、ほぼ 一定の1.1~1.2であるが、中間層の変形が大きいケース 3Bでは、 $R_T$ の増大に伴い、1.5程度にまで増大する。

層崩壊比( $\eta$ )と全体変形角( $R_T$ )の関係を図-12に 示す。ケース1では、 $\eta$ は $R_T$ の増大に伴い 0.4 から 0.6 程度に増大し未崩壊層の崩壊率も増大するが、上層階の み降伏耐力を増したケース2Bでは、 $\eta$ の変化は小さい。

#### 6. 解析結果の考察

#### 6.1 全体崩壊率によるベースシア係数の推定

ベースシア係数の推定値  $(C_{B1})$  とベースシア係数  $(C_B)$ の比率を図-13 に示す。 $C_B$ に対する  $C_{B1}$ の比は、0.99~ 1.00 であり、 $C_{B1}$ は  $C_B$ に非常に良く対応している。全ケ ースにおいて、 $R_T$ が 1/200 程度以上、あるいは $\alpha$ が 0.6 程度以上の範囲では、(1)式によりベースシア係数が精度 良く推定できていることがわかる。

#### 6.2 ケース1の柱応力の推定

ケース1における柱応力の推定値と解析値の比率を図 -14,15に示す。内柱せん断力の解析値(Q)に対する推 定値(Q1)の比は, $R_T$ が1/67以上では0.95~1.01であ り、Q1はQに比較的良く対応している。 $\alpha$ は、あるス テップの全体崩壊メカニズムに対する内力の仕事量の 比率にほぼ等しいことから、全体崩壊形のフレーム構造 では $C_B$ や内柱のQは精度良く推定できるものと考えら れる。また、内柱曲げモーメントの解析値(M)に対す る推定値(M1)の比は、 $R_T$ が1/67以上では0.66~1.06



であり、未崩壊層を含む上層階での推定精度がやや劣っ ている。これは、外力分布一定下の大変形時における柱 反曲点の移動によるためである。大地震時の検討用柱応 力に用いる反曲点の妥当性は別途判断したほうがよい。



また,変動軸力が圧縮力となる外柱(以下,圧縮側外柱 と呼ぶ)を見ると、未崩壊層である10階では内柱に比 べて柱せん断力の推定精度が劣っていることがわかる。

# 6.3 降伏耐力の異なるケースの柱応力の推定

ケース 1~3B における柱応力の推定値(Q1, M1)と 解析値 (Q, M) の比率を図-16, 17 に示す。内柱では, 柱せん断力の推定値は、各ケースとも解析値に比較的良 く対応しており、(1)式により内柱せん断力が推定できる ことがわかる。一方、柱曲げモーメントの推定値は、柱 せん断力に比べてケースによる違いが見られ,R<sub>T</sub>が1/50 程度では解析値に対して崩壊層で2割、未崩壊層で最大 4 割程度異なる。また、圧縮側外柱では、柱せん断力の 推定値は、内柱に比べて解析値に対する対応がやや劣っ ており, R<sub>T</sub> が 1/50 程度では崩壊層で1割,未崩壊層で 2~4 割程度異なる。柱曲げモーメントの推定値は、内柱 と同様に解析値に対して推定精度が劣る。

#### 7. まとめ

未崩壊層を有する10階建RC造梁降伏型フレーム構造 を対象に静的非線形解析を行った。その結果、本解析の 範囲内であるが、以下の知見を得た。

(1) 全体崩壊率を定義して、未崩壊層を有する梁降伏 型全体崩壊形フレーム構造の必要保有水平耐力算定用 崩壊形及び応力に関する検討方法を示した。

(2) 解析終了時のベースシア係数及び内柱のせん断 力は、解析中間値と全体崩壊率を用いた方法により精度 良く推定できる。

(3) 解析終了時の圧縮側外柱のせん断力は,崩壊層 では解析中間値と全体崩壊率による推定値に比較的良 く対応するが、内柱と比べて推定精度がやや劣る。

(4) 解析終了時の内柱曲げモーメントは、崩壊層で は解析中間値と全体崩壊率によりある程度推定できる が、変形の増大に伴う反曲点の移動に注意が必要である。

今後, 部分崩壊形のフレーム構造や壁フレーム構造を 対象に本論文の推定方法について検討していきたい。

#### 謝辞

壁谷澤寿海教授(東京大学)はじめ、日本建築学会二 次設計検討小委員会の委員各位には貴重なご意見を頂 戴致しました。ここに記して深甚なる謝意を表します。 参考文献

- 1) 国土交通省住宅局建築指導課ほか:建築物の構造関 係技術基準解説書, pp.449-454, 2007
- 2) 日本建築学会:鉄筋コンクリート造建物の靱性保証 型耐震設計指針・同解説, 1999
- 3) 日本建築学会:鉄筋コンクリート構造計算規準・同 解説, 1999