論文 柱・梁の曲げ耐力比が RC 接合部に及ぼす力学的性状

田邊 裕介*1・石川 裕次*2

要旨:一般的な RC 造建物の柱梁接合部について,柱主筋強度および主筋径の異なる柱梁接合部の静的載荷 実験を行った。本研究目的は,柱の曲げ終局強度および柱と梁の曲げ耐力比が異なる場合に,接合部せん断 強度に与える影響を確認することである。試験体は接合部破壊するように設計しており,歪分布やひび割れ 分布から破壊挙動の違いを検討した。本実験結果では,ひび割れ状況に若干の違いがあったが,接合部せん 断強度および変形成分には大きな違いが見られなかった。

キーワード:鉄筋コンクリート,柱梁接合部,接合部破壊,柱梁曲げ耐力比

1. はじめに

近年,鉄筋コンクリート造柱梁接合部には,鉄筋・コ ンクリートの高強度化に伴い高いせん断力が発生する ことが知られている^{1),2)}。一方,靭性保証指針³⁾による接 合部の設計では,接合部設計用せん断力がコンクリート 強度と断面形状から決まる接合部せん断強度以下にな るように規定しており,柱・梁の曲げ耐力比が接合部に どのような影響を及ぼすか示すデータは少ない^{4),5}。

そこで本稿では,一般的な RC 造建物の接合部破壊が 先行する柱梁接合部について,柱・梁の曲げ耐力比が異 なる2体の試験体を製作し,比較検討を行った。

2. 実験計画

2.1 試験体概要

試験体は 1/2 スケールの十字形接合部試験体 2 体とし た。コンクリートは設計基準強度 Fc21,梁主筋には SD490を使用した。今回の試験では, 接合部破壊に柱梁 の曲げ耐力比が及ぼす影響を確認する為に,確実に接合 部破壊が先行するように設計し, 接合部せん断余裕度を IS01 で 0.55, IB01 で 0.53 とした。表 - 1 に試験体諸元 を,図-1に試験体図を,表-2に使用鉄筋の材料強度 を示す。実験因子として試験体 IS01 と IB01 は, 柱の主 筋強度および主筋径により柱・梁の曲げ耐力比を変化さ せたもので、それぞれ柱・梁の曲げ耐力比が IS01 は 2.30, IB01は3.67,であった。接合部せん断強度は靭性保証指 針 3)に従い求め(平均値式とする為, 靭性保証指針の解 説に従い,求めた強度に 1/0.85 を乗じている),柱梁の 終局曲げ耐力はそれぞれ AIJ による略算式 ^{6,7)}より算出 した。また,今回の実験では試験体の付着破壊を防止す る為,接合部内で梁主筋に円形のナットを溶接し,通し 梁主筋強度を割り増した。

表	- 1	試験体諸元
23		ロル例大ドキャロロノレ

	討	験体	IS01	IB01		
-	コンクリート	·強度 _B [N/mm ²]	27.4	25.3		
_	ヤング係数	$E_c[\times 10^4 \text{N/mm}^2]$	2.64	2.54		
_	梁断面	$B \times D[mm]$	250 ×	300		
_	梁	主筋	4+2-D19	(SD490)		
_	梁せん	断補強筋	$4 - D6@60 (SD785), p_w = 0.84\%$			
_	柱断面	$B \times D[mm]$	350 × 350			
_	柱	主筋	12-D22 (SD345)	12-D25 (SD490)		
_	柱横	補強筋	2-D6@50 (SD7	85), p _w =0.36%		
	接合部	橫補強筋	2-D6@75 (SD2	95), p _{jw} =0.24%		
_	接合部せ	ん断余裕度 "	0.55	0.53		
_	通し梁主梁	筋定着余裕度 ^{b)}	0.60	0.57		
	柱・梁の	曲げ耐力比 🕫	2.30	3.67		
a)靪	11性保証指針:	式(平均値式)[文献 31 ,	3,024		
[柏 B× 主角	È] D:350×350 G:12-D22	350 3882 110 8238	[梁] B×D:250×300 主筋:(4+2)-D1	250 9 413056 41		
帯角	$p_g=3.79\%$ fig: 2 - D6@50 (SD295A) $p_w=0.36\%$		(3D490) pt=2.74% 防筋: 4-D6@60 (SD785) Pw=0.849			
				で で で で で で で で で で で で で		
		IS01		IB01		

*1	(株)竹中工務店	技術研究所	研究員	修士(工)	(正会員)
*2	(株)竹中工務店	技術研究所	主任研究員	博士(工)	(正会員)

-253-

细插	降伏点	Ī,	ヤ	ンク [`] 係数Es	F	降伏比	引張	強度	伸び
函则 个里	(N/mm^2)		$(\times 10^{5} \text{N/mm}^{2})$			(%) (N/n		nm²)	(%)
D6 (SD295A)	363	3		1.97		67.1	541		21.1
D6 (SD785)	1006			1.95		80.4	1251		8.5
D19 (SD490)	530			1.92		74.8	70	9	16.5
D22 (SD345)	396	1.87			69.0	57	0	20.2	
D25 (SD490)	537			1.94		76.5	702		25.2
表 - 3 実験結果一覧									
学田安			層せん断力 Vu		ISC)1	IB01		
			層間変形角 R		正負	正負平均		正負平均	
沙曲げひび割ち			Vu (kN)		23.3		31.4		
			R ($\times 10^{-3}$ rad.)		0.5		1.0		
接合部せん断ひび割れ		V	Vu (kN)		52.0		56.1		
			R (×10 ⁻³ rad.)		1.8		2.0		
接合部帯筋降伏		V	/u (kN)		160.7		153.3		
			R ($\times 10^{-3}$ rad.)		11.9		12.2		
沙士笠咚住		V	/u (kN)		143.7		110.3		
* 工 肋 阵 闪			R ($\times 10^{-3}$ rad.)		30.7		35.5		
计十次网件		V	Vu (kN)		152.8		未降伏		
住土肋性队			R ($\times 10^{-3}$ rad.)		36.1		未降伏		
最大耐力		N	/u (kN)		189.5		170.9		
			R ($\times 10^{-3}$ rad.)		20.2		2	0.1	

表 - 2 使用鉄筋の機械的性質

2.2 加力方法

加力は,梁端加力として層間変形角が R=±1.0,2.5, 5.0,10,20,30,40,50×10⁻³rad.となるよう制御し,各 2サイクルずつ正負交番繰返し載荷を行った。柱軸力は, 長期軸力に相当する力(N=0.1 _B×BD_c)を載荷した。

3. 実験結果

3.1 破壊経過

表 - 3 に実験結果一覧を 一図 - 2 に試験体 ISO1 の破壊 経過を示す。なお,ひび割れは中央から右側にのみマジ ックで記入し, 左側は実際のひび割れ状況を記録するた めにマジックによる記入は行わなかった。共通した破壊 経過として,変形に伴うひび割れは,まずR=1.0×10⁻³rad. に梁端に曲げひび割れが発生した。R=2.0×10⁻³rad.に接 合部中央部に接合部せん断ひび割れが一本発生し, R=5.0×10⁻³rad.に接合部内の梁主筋沿いに水平ひび割れ が発生した。以降, 接合部せん断ひび割れは本数が増加 し,ひび割れが柱の上下面まで伸展した。最大耐力であ る R=20×10⁻³rad.では, 接合部中央のせん断ひび割れが 大きく開き,除荷後もひび割れが残った。ポストピーク では,先述したひび割れが拡大し,接合部での破壊が顕 著となった。R=30×10⁻³rad.で接合部のかぶり部分は,接 合部対角を貫通したひび割れにより4つのピース状にな り,互いに接触し合い,左右のピースが剥離した。また 梁変形は,端部での回転変形が主となり,梁のその他の ひび割れは閉じた。

図 - 3 に試験体 IB01 の破壊経過を示す。試験体 IB01 は, IS01 とほぼ同様の破壊経過を示したが, IS01 と比較 して,接合部せん断ひび割れの柱上下面への伸展が大き かった。

中央から右側にのみマジックでひび割れ記入図 - 2 破壊経過(IS01)

図-3 破壊経過(IB01)

3.2 履歴特性

層間変形角 - 層せん断力関係および層間変形角 - 等価粘性減衰定数関係を図 - 4 に,R=30×10⁻³rad.までの包絡線の比較を図 - 5 に示す。図 - 4 には靭性保証指針³⁾に従い求めた接合部せん断強度を併記した。等価粘性減衰定数(以下,heq)は同一変形角における2サイクル目のデータを用いて算出した。

共通事項として,試験体 IS01, IB01 ともに接合部帯筋 は最大耐力に達する R=20×10⁻³rad.の直前に降伏し,梁 主筋は最大耐力後である R=20~30 × 10⁻³rad.に一段筋が 降伏しており,破壊状況と合わせて,共に破壊形式は接 合部破壊である(J破壊)と判定した。また,最大耐力 は AIJ の略算式から求めた梁曲げ終局強度時の層せん断 力計算値 ⁶に対し 60%程度であった。履歴は共にスリッ プ性状が顕著であり,いずれの試験体も最大耐力以降い わゆる接合部せん断破壊以降,heq は頭打ちになると共 に, IB01 では heq は大変形時に逆 S 字現象が顕在化し, heq が低下した。試験体 IS01 と IB01 を比較すると, IS01 の最大耐力が大きいが,これはコンクリート強度による 違いと考えられる。 剛性および heq は両試験体でほぼ同 等の値を示し,主筋量による影響はほとんど見られなか った。主筋強度および主筋径が小さい IS01 は,柱主筋が R=36×10⁻³rad.の時降伏しており, R=40×10⁻³rad.以降, 若干 IB01 より heq が高い値となった。

-255-

図 - 5 包絡線の比較

3.3 接合部せん断変形角 せん断応力度関係

図 - 6 に最大耐力 R=20×10⁻³rad.までの接合部せん断 変形角 - せん断応力度関係を示す。試験体 ISO1, IBO1 ともに R=2.0×10⁻³rad.に接合部ひび割れが発生し,ひび 割れ点をきっかけに剛性が低下している。R=10×10⁻³rad. にせん断変形角 が増加し,接合部せん断補強筋の降伏 が認められた。試験体 IBO1 の正側では,ひび割れ箇所 の影響から R=+20×10⁻³rad.以降の実験値が小さい値と なったが,負側では ISO1 と同等の値を示した。また接合 部のせん断強度 jを下記(1)式より求め、図に併記した。

$$\tau_j = 0.8 \times \sigma_B^{0.7} \tag{1}$$

$$\sigma_B$$
:コンクリート強度

接合部せん断強度の計算値は JS01 では 7.10 [N/mm²], IB01 では 6.71 [N/mm²]となり,実験値より小さい値となった⁸⁾。

3.4 变形成分

図 - 7 に試験体 IS01 の R=30 × 10⁻³rad.までの変形成分 を示す。変形成分は正負ピーク時の変形成分を平均して 求めている。梁変形は,試験体に設置した変位計から梁 先端での変形と梁端部での回転変形を加算して求めた。 柱変形は柱端部の回転変形から求めた。

接合部の変形割合は,最大耐力である R=20×10⁻³rad. まで変形とともに増加し,以降ほぼ一定の割合となり20 ~30%程度であった。梁変形は,接合部せん断変形の増 加に伴い減少し,R=20×10⁻³rad.以降一定値となり60% 程度となった。柱変形は,接合部破壊に伴い増加した。 3.5 鉄筋の歪分布

(1) 梁主筋歪分布

図 - 8に R=+5~30×10³rad.までの梁上端一段筋の歪 分布を示す。梁主筋歪は,変形に伴い増加しIS01とIB01 を比較すると,相対的にIS01の歪が大きかった。これは

IS01 の最大耐力が大きかった為 だと考えられる。また IS01 では 梁危険断面位置であるゲージ より接合部内のゲージ の歪が 大きい値を示した。

図 - 6 接合部せん断変形角 - せん断応力度関係

図 - 7 変形成分

図 - 8 梁上端一段筋歪分布

(2) 接合部横補強筋歪分布

図 - 9に R=+5~30×10⁻³rad.までの接合部の横補強筋 の歪分布を示す。共通事項として,接合部の横補強筋歪 は変形の増大に伴い歪が大きくなり,接合部中央からほ ぼ対称の値となった。最大耐力時 R=20×10⁻³に接合部内 の横補強筋 , が降伏した。接合部中央の横補強筋歪 は , と比較し小さい値となり,変形に関係なくほ

ぼ一定値となった。横補強筋降伏時には左右梁端部から 圧縮応力が作用する側で接合部せん断ひび割れは,面外 に押し出される現象が見られた。

試験体 ISO1 と IBO1 の接合部の横補強筋歪を比較する と,接合部内の横補強筋 , で IBO1 の歪が大きく, R=20×10⁻³で横補強筋 では ISO1 より 2000 µ 程度大き い値となっており,柱の曲げ耐力が大きい時,接合部内 の横補強筋に大きな応力が発生した。図 - 10に鉄筋降 伏時の損傷状況を示す。降伏した接合部の横補強筋周辺 に多数のひび割れが発生していることが分かる。

(3) 柱主筋歪分布

図 - 1 1 に R=+20 × 10⁻³, R=+40 × 10⁻³ における柱主筋 至分布を示す。R=+20 × 10⁻³ では,左右の一段筋 C1, C4 で対称の値となっており,二段筋 C2, C3 は一様に歪ん でいる。正サイクル時に下柱で引張側となる鉄筋 C4の ゲージ位置 A と B を比較すると,梁と同様に柱危険断面 位置の A より,接合部内である B の位置で大きな値とな っている。これは接合部内の応力を柱主筋が負担してい る為と考えられる。

試験体 ISO1 と IBO1 を比較すると, ISO1 の柱主筋歪が 大きく, ISO1 の柱主筋は, R=40×10⁻³rad.に鉄筋 C1 の接 合部中央位置 D で降伏した。これは, ISO1 の主筋径が細 く, 同様のせん断力に対し柱主筋一本の負担が増えた為 である。また図 - 10に示すように降伏箇所の側を大き なひび割れが貫通していることが分かる。

-C2

- C 1

 $[R=+20 \times 10^{-3} rad.]$

図 - 1 1 柱主筋歪分布

3.6 接合部ひび割れ幅の推移

図 - 12に各サイクルピーク時の接合部ひび割れ幅 の推移を示す。ひび割れ幅は,図に示すように接合部の 対角線上に変位計を設置し,計測区間80mmにあるひび 割れを計測した。なお変位計は,正サイクル時に接合部 内で開くひび割れを計測するように設置している

接合部せん断ひび割れは, 試験体 IB01 では接合部入 隅部 JC1 より接合部中央である JC4 で大きい値となり, IS01 では R=30×10⁻³rad.まで計測箇所に因らずほぼ一定 の値であった。R=+20×10⁻³rad.における JC1~JC4 の各ひ び割れ幅を平均すると IS01 では 0.92mm, IB01 では 1.03mm と同等の値となった。IB01 では, 接合部中央部 JC4 で R=+20×10⁻³rad.に 2.3mm 程度まで大きく開き,負

サイクルでもひび割れが残った。 塩原ら¹⁰⁾が指摘しているような 接合部中央が開く変形モードは IB01 では R=20 × 10⁻³rad.に, IS01 では R=40 × 10⁻³rad.に 確認できた。引張鉄筋側で 入隅部が開く変形は,

R=-20×10⁻³rad.から確認できた。

接合部変位計位置

4. まとめ

一般的な RC 造建物の柱・梁曲げ耐力比が異なる試験 体の接合部実験を行い,以下のような知見が得られた。 なお,柱・梁曲げ耐力比は柱の主筋径・強度の違いによ り変化させ,IS01の柱・梁曲げ耐力比は IB01 の 0.63 倍 とした。

(1) 柱・梁曲げ耐力比の違いが剛性および接合部せん断

強度に及ぼす影響は小さかった。等価粘性減衰定数 heq は,大変形時には,主筋強度が低い ISO1 では柱 主筋が降伏した為 R=30×10⁻³rad.以降 ISO1 の heq は, IBO1 より若干大きくなった。

- (2) IS01 と IB01 の破壊経過は、R=10×10⁻³rad.までほぼ
 同じ挙動を示した。最大耐力に達した R=20×10⁻³rad.
 以降,接合部のひび割れ状況が若干異なった。
- (3) 接合部の横補強鉄筋の歪分布から, IS01 と IB01 の鉄 筋が負担する力の違いを確認した。柱主筋量の多い IB01 では, 接合部横補強筋の負担割合が高かった。
- (4) 変位計によるひび割れ計測により,試験体の変形モードを確認した。

参考文献

- 石川裕次,木村秀樹,山本正幸,角彰:RC 造骨組 み架構の履歴特性モデル,コンクリート工学年次論 文報告集 第 27 巻 2 号,pp25-30,2005
- 石川裕次,木村秀樹,東端泰夫,角彰:梁主筋に高 強度鉄筋(USD685)を用いた柱・梁接合部の力学性状, コンクリート工学年次論文報告集 第23巻3号, pp415-420,2001
- 3) 日本建築学会:鉄筋コンクリート造建物の靭性保証 型耐震設計指針・同解説,1999
- 4) 角徹三,浅草肇,青木正美:RC 柱・はり外部接合 部の耐力と靭性に関する研究(その1:はりと柱の 曲げ耐力比の影響),日本建築学会大会学術講演梗 概集(関東)C,pp455-456,昭和63年10月
- 5) 加藤史明,田崎渉,楠原文雄,塩原等,田尻清太郎, 福山洋:RC 造十字型柱梁接合部の耐震性能に及ぼ す柱・梁曲げ強度比と主筋間距離の影響に関する実 験 その1~その2,日本建築学会大会学術講演梗 概集(東北)C-2, pp397-400, 2009
- 6) 日本建築学会:鉄筋コンクリート構造計算規準・同 解説,付20,pp.600-615,昭和63年7月
- 7) 日本建築学会:地震荷重と建築構造物の耐震性 (1976),pp670,昭和52年1月
- 8) 村上秀夫,藤井栄,石渡康弘,森田司郎:鉄筋コン クリート造内部柱・梁接合部のせん断強度に関する 検討(接合部データベース解析 その1),日本建 築学会構造系論文集 第503号,PP85-92,1998.1
- 9) 藤井栄,森田司郎:鉄筋コンクリート外部柱・梁接
 合部のせん断抵抗機構,日本建築学会構造系論文報
 告集 第 398 号,pp61-71,1989.4
- 10) 塩原等:鉄筋コンクリート柱梁接合部:見逃された 破壊機構,日本建築学会構造系論文報告集,第 74 巻,第 631 号,pp1641-1648,2008.9