論文 曲げおよび乾燥収縮ひび割れを生じる鉄筋コンクリート造床スラブ の動的特性の変化に関する実験研究

山本 俊彦*1

要旨:鉄筋コンクリート造床スラブは、周辺の架構により乾燥収縮ひずみの拘束を受け、乾燥収縮応力が曲 げ応力に加算される形でひび割れが生じる。このため、曲げおよび乾燥収縮ひび割れを生じる鉄筋コンクリ ート造床スラブの動的特性に関する長期・短期の実験を行った。実験の結果、床スラブの固有振動数は、コ ンクリートの乾燥収縮に伴うひび割れの発生によって、早期に固有振動数の低下を生じ、約6年間にその低 下は20~30%を示した。また、短期載荷実験で静的な剛性との比較を行うとともに、短期、長期の床スラブ の固有振動数の予測手法を検討した。

キーワード:固有振動数,ひび割れ,鉄筋コンクリート造スラブ,乾燥収縮

1. はじめに

鉄筋コンクリート造床スラブは、ひび割れの発生等に よって剛性が低下し、これに伴い固有振動数が低下する。 剛性低下は、床スラブの応答変位を増大させるばかりで なく、場合によっては振動数低下によって人体内臓への 共振などが生じ、その健全性が損なわれることがある。

鉄筋コンクリート構造物における床スラブは、周辺の 架構によって支持されると同時に、乾燥収縮ひずみの拘 束を受ける。これは,鉄筋コンクリート造床スラブの配 筋量や厚さが、梁などに比べて小さく、乾燥収縮ひずみ が相対的に大きいことにより、収縮ひずみの拘束が生じ る。拘束された収縮ひずみは、クリープによって緩和さ れるが,残留ひずみは床スラブに引張応力を生じさせ, これが大きい場合には曲げ応力に加算され、コンクリー ト断面にひび割れを発生させる。鉄筋コンクリート造床 スラブの剛性低下には、この影響を考慮する必要がある。 これまで、ひび割れの影響考慮した鉄筋コンクリート部 材の長期たわみに関する予測式 ^{1),2),3)}は, いくつか提案さ れている。しかし,鉄筋コンクリート造床スラブの動的 特性に関する調査・研究はいくつか行われているが^{4),5)}, 短期・長期の変化を予測するためには、十分とは言えな い。このため、曲げと乾燥収縮によってひび割れが生じ る場合を想定した鉄筋コンクリート造床スラブの長期

載荷実験を行い,固有振動数の変化を調べた。併せて, 長期載荷実験終了後,終局載荷実験によって鉄筋コンク リート造床スラブの短期的な固有振動数の変化につい ても検討した。

2. 実験概要

2.1 試験体

試験体は両端拘束の一方向スラブとした。試験体を図 -1 および表-1 に示す。試験体は上側の実験対象スラ ブと拘束用の下側部分からなり、実験対象スラブの幅は 400mm, 板厚を 120mm~240mm, スパンを 3600mm~ 7200mm とし、板厚/スパン比を一定の 30 とした。引張 鉄筋比 pt は, 0.29%~0.38%とした。両端部は複筋配筋 とし,中央部圧縮側は無筋とした。引張主筋は,幅 450mm, 突出 100mm の梁部へ 40d_a(+末端 5d_aは付着カット)の定 着をとった。下部拘束スラブには、100mmの直線部から 200mm の 45° テーパー部を介して繋がっている。下側 拘束スラブ幅は 400mm, 厚さ 360mm で, 配筋 2× 3-D16(p,=0.83%)を共通とし、比較的軸方向に拘束が高い ものとした。長期持続荷重による曲げ応力は 2.5MPa 一 定とし、収縮ひずみの拘束によって長期的に曲げひび割 れが生じる値とした。試験体は載荷材齢 28 日まで湿潤 状態を保つためシート養生し、スラブ支柱もそのままと

^{*1} 大同大学 工学部建築学科教授 工博 (正会員)

表-1 試験体一覧

封殿休	スパン	板厚	端部	配筋*	中央配筋**		自重	積載	持続荷重	d
武)映11平	(mm)	(mm)		(p_t)		(p_t)	(kN/m)	(kN/m)	(kN/m)	(mm)
S1	7200	240	4-D10	0.333	4-D10	0.333	2.26	0	2.26	215
S2	5400	180	3-D10	0.346	3-D10	0.346	1.70	0.545	2.25	155
S3	4500	150	2-D10	0.286	2-D10	0.286	1.41	0.872	2.28	125
S4	3600	120	2-D10	0.376	2-D10	0.376	1.13	1.09	2.22	95

*端部上端、下端同じ **中央上端配筋なし

表-2 試験体の特性計算値

⇒→膝/★	持続荷重	曲げ応力	たわみ	鉄筋応力	Ē	固有振動数(H	z)	降伏荷重	崩壊荷重
武顺 14	(kN/m)	(MPa)	(mm)	(MPa)	自重	1/2 積載	持続荷重	(kN/m)	(kN/m)
S1	2.26	2.54	1.45	181	14.9	-	-	4.78	6.37
S2	2.24	2.52	1.09	187	19.8	-	17.2	4.59	6.12
S3	2.28	2.57	0.918	246	23.8	20.8	18.7	3.56	4.74
S4	2.22	2.50	0.714	202	29.7	24.4	21.2	4.22	5.63

した。試験体の主な性質を表-2 に示す。スラブの固有 振動数は、式(1)によって求めた。弾性たわみは、各試験 体ともスパン比 1/4300 程度である。コンクリートの動的 弾性係数と静的弾性係数は、同じ 23.6GPa とした。

$$f_n = \frac{k_n^2}{2\pi \cdot l^2} \sqrt{\frac{E_c I}{\rho A}} \tag{1}$$

ここに、 f_n :固有振動数、 k_n :支持条件による係数(4.73)、 l:スパン長さ、 E_c :コンクリートの弾性係数、l:ス ラブの断面二次モーメント、 ρ :スラブの質量(積載荷 重を含む)、A:スラブの断面積

2.2 使用材料

コンクリートの調合を表-3に、また強度特性を表-4 に示した。材齢 28 日でのコンクリート圧縮強度は 23.7MPa であった。拘束用の下スラブの圧縮強度はやや 高い値を示した。鉄筋は D10, D16 共 SD295 材を用いた。 D10 の降伏強度は 373MPa 引張強度は 547MPa であった。

表-3 コンクリートの調合

С	W	S	G	混和剤	スランフ゜
(kg/m ³)	(mm)				
302	172	818	1002	0.755	180

2.3 実験条件・測定方法

材齢 28 日まで乾燥を防ぎシート養生し,翌日支柱撤 去、コンクリートブロックによる等分布載荷を行った。 固有振動数の測定は,乾燥収縮の進行に伴い,種々の材 齢で行った。表-5 に長期載荷実験日程を示した。長期 載荷実験終了後,試験体の終局載荷実験を行い,静的な 剛性と固有振動数の関係を調べた。固有振動数の測定は,

表-5 長期載荷実験日程

材齢(日)	29	57	92	1213	1246	2254
初期載荷	0					
除荷		0	0	0		0
再載荷		0	0		0	

図-2 固有振動数の測定方法

部位	養生	核齢 比重 後生 (日)		σ_c (MPa)	σ_t (MPa)	σ_b (MPa)	E _c (GPa)
上スラブ	湿潤	28	2.29	23.7	1.93	3.97	23.6
下スラブ	湿潤	28	2.33	26.9	2.32	4.22	27.3

⇒≠₩	たわみ(δ :mm)	実涯	则固有振動数(f	Hz)	計算值比(f/f _{cal})			
武帜仲	持続荷重	自重	1/2 積載	持続荷重	自重	1/2 積載	持続荷重	
S1	1.27	15.1	-	-	1.02	-	-	
S2	0.91	20.3	-	17.6	1.02	-	1.02	
S3	0.87	24.4	21.4	19.3	1.03	1.03	1.03	
S4	0.65	30.4	24.9	21.6	1.02	1.02	1.02	

表-6 載荷時の試験体特性

図-2 に示すように人体歩行や日常生じる程度の振動を 対象に、砂袋(500g)をスラブ上 250mm から落下させ、自 由振動を記録した。試験体の軸方向の収縮変形を変位計 で測定し、鉄筋ひずみ、コンクリートひずみを測定した。 実験は、周辺の環境の温湿度の変化を受ける実験室内で 行った。季節的な変化を受け、日平均温度は 2℃~31℃ で年間平均約 16℃,湿度は年間平均約 67%であった。

3. 長期載荷実験の結果

3.1 載荷時の試験体の特性

表-6 に支保工撤去時の自重および初期載荷時の試験 体のたわみ,固有振動数を示す。持続荷重載荷後の試験 体のたわみ,固有振動数は,コンクリートの弾性係数を 23.6GPa とした計算値よりいずれも若干高い値を示した。 持続荷重載荷後,いずれの試験体においても,曲げひび 割れの発生は認められなかった。自重および持続荷重載 荷後の固有振動数の計算値に対する比は,一定の1.02~ 1.03 で変化はないことから,以後,各試験体の基準弾性 固有振動数として,これらの値を用いることとする。

3.2 固有振動数の変化

図-3,4に持続荷重時および除荷時のスラブ固有振動 数の変化を示す。いずれの試験体も持続荷重載荷後,早

図-3 固有振動数の変化(持続荷重)

期に乾燥収縮によりひび割れが生じ,固有振動数が低下 した。材齢 500 日程度でほぼ一定値に収束し,その後多 少の変動を伴いながら経過した。最終材齢での固有振動 数は,載荷時の基準弾性固有振動数に対し,持続荷重状 態で 0.72~0.80,自重で 0.69~0.80 と大きな低下を示し た。固有振動数の低下を式(1)の *E*_c*I* で示される静的剛性 に換算すれば, 0.48~0.64 となり大きな剛性低下を示す。

表-7 固有振動数の変化(持続荷重時)

試験体			f [Hz]			<i>f/f</i> ₂₉				
[days]	29	56	373	1301	2254	29	56	373	1301	2254
S1	15.1	14.4	12.9	12.2	12.1	1.00	0.95	0.86	0.81	0.80
S2	17.6	16.4	14.5	13.6	13.7	1.00	0.93	0.82	0.77	0.78
S3	19.4	17.6	14.5	14.0	14.1	1.00	0.91	0.75	0.72	0.73
S4	21.6	19.5	16.0	15.8	15.6	1.00	0.90	0.74	0.73	0.72

表-8 固有振動数の変化(自重)

試験体			f[Hz]		f/f_{29}					
[days]	29	56	373	1301	2254	29	56	373	1301	2254
S1	15.1	14.4	12.9	12.2	12.1	1.00	0.95	0.86	0.81	0.80
S2	20.3	18.6	18.1	16.1	15.6	1.00	0.92	0.89	0.80	0.77
S3	24.4	22.2	21.7	17.9	17.5	1.00	0.91	0.89	0.73	0.72
S4	30.4	26.6	24.8	21.5	20.8	1.00	0.88	0.82	0.71	0.69

3.3 乾燥収縮ひずみ

図-5 に各試験体のスパン間の軸方向の縮みを変位計 で計測した値をひずみとして示した。初期には乾燥に伴 い急速に収縮し,材齢 500 日を超える頃からは,年間の 湿度変化に伴って,伸び縮みの変化を繰り返しながらや や増大する傾向を示した。材齢初期は,スラブ厚の小さ い試験体での収縮が大きかったが,終局時にはほとんど 変わらない値になった。表-9 にスラブの収縮ひずみ変 化を示した。表中には各試験体スラブの断面と同一で長 さが 600mm の試験片の自由収縮ひずみを示した。最終 材齢での試験体スラブの拘束収縮ひずみは約 500 µ,

図-5 試験体の軸方向の収縮

試験片の自由収縮ひずみは,約 800 μ となった。拘束率 は約 0.4 となった。

自由収縮とスラブ試験体の収縮ひずみの差を拘束ひ ずみとし,式(2)によりおおよその乾燥収縮応力(引張を 正)を推定した。

$$\sigma_{sh} = \frac{\left(\varepsilon_{ss} - \varepsilon_{sm}\right)}{\chi} E_c \tag{2}$$

ここに、 σ_{sh} (+):乾燥収縮応力、 ε_{ss} (-):スラブ収縮ひず み、 ε_{sm} (-):モデルスラブ試験片自由収縮ひずみ、 χ : リラクセーション係数-材齢によらず 5.0 一定と仮定⁶

乾燥収縮による引張応力を正確に求めるのは困難で あるが,引張クリープ限界に近いことから平均的な圧縮 クリープ係数 3.0 でのリラクセーション係数 4.0 より大 きい 5.0 とした。求められた引張応力を曲げ応力に加算 すると,端部で曲げ応力の 1.6 倍の 3.83~4.09MPa,中央 で 2.1 倍の 2.56~2.78MPa となる。

3.4 ひび割れ状況

図-6 に最終材齢での各試験体のひび割れ状況を示した。図中にはひび割れ幅 0.1mm 以上のものを示した。

図-6 試験体ひび割れ状況(0.1mm 以上)

3.5 材料特性の変化

表-10に長期載荷終了後,各試験体から採取したコン クリートコアによる材料特性を示す。圧縮強度は 23.9MPa で初期のコンクリート供試体によるものとほぼ 同じであったが,比重は2.25 で2%,弾性係数は20.4GPa と14%低い値を示した。これらは、コンクリートの乾燥 による影響が大きいと考えられる。

試験体	5	Slab shri	nkage <i>e ss</i>	[μ]	Slat	b model	shrinkage a	ε _{sm} [μ]	Tensile stress σ_{sh} [MPa]			
[days]	373	731	1301	2254	373	731	1301	2254	373	731	1301	2254
S 1	400	440	528	507	700	730	820	780	1.42	1.37	1.38	1.29
S2	424	433	515	498	750	770	840	810	1.54	1.59	1.53	1.47
S 3	449	462	542	504	740	770	830	820	1.37	1.45	1.36	1.49
S4	450	464	547	514	830	830	905	830	1.79	1.73	1.69	1.49

表-9 スラブの収縮ひずみの変化

試験体	S 1	S2	S 3	S 4	平均
比重	2.24	2.24	2.25	2.25	2.25
σ_c (MPa)	23.8	26.4	23.1	22.5	23.9
Ec (GPa)	20.2	20.4	21.2	19.8	20.4

表-10 コアコンクリートの特性

3.6 動的剛性と静的剛性

除荷・載荷時のたわみから求まる静的な剛性*D*_sを式(1) の*E*_c*I*とし,固有振動数から求めた動的剛性*D*_dとの平方 比として図-7に示した。動的剛性は静的剛性に対して平 均7%高い値を示した。

4. 短期載荷実験

4.1 実験方法

長期載荷実験終了後,コンクリートブロック等分布載 荷による終局強度実験を行った。荷重は,表-2に示す計 算上の崩壊荷重を超えるまで載荷を行った。

4.2 実験結果

実験結果の例として、図-8に試験体S1の荷重-変形, 図-9に固有振動数-荷重関係を示す。自重によるたわみ を補正するため、図-8に示す第1荷重載荷時および最終 荷重除荷時の変形を直線延長して荷重ゼロの原点とし て示した。端部降伏時に変形が急増したが、中央降伏は 生ぜず崩壊機構は形成しなかった。固有振動数は荷重の 増加と共に低下し、載荷時の12.2Hz から除荷時には 10.7Hz となった。その比は0.87 となった。

4.3 動的剛性と静的剛性

図-10 に、短期載荷実験でのたわみから求まる静的な 剛性 D_s :載荷段階毎の接線剛性 $D_{s,tan}$ および原点をむす ぶ割線剛性 $D_{s,sec}$ を式(1)の E_cI として、固有振動数からの 求まる動的剛性 D_d と併せて、無ひび割れ断面剛性 D_o と の平方比で示した。除荷時は、除荷時荷重ゼロを原点と して求めた。荷重段階初期は、動的剛性は静的剛性に対 し 9%程度高い値を示しているが、荷重増加により静的 剛性は動的剛性に比べさらに大きな低下を示した。

5. 固有振動数の予測

ひび割れを有する床スラブの固有振動数を式(3)によって検討する。

$$f = v \cdot f_o \tag{3}$$

ここに, *v*:ひび割れによる修正係数, *f*_o:無ひび割れ

試験		۱	,	Measured		Ratio-1		D.L.	Ratio-2	D.L.
体	h	$(d/h)^3$	$v = \sqrt{(d/h)^3}$	<i>f</i> ₂₂₅₄ [Hz]	f'_{2254} [Hz]	(f_{2254}/f_{29})	(f_{2254}/vf_o)	(f'_{2254}/vf_o)	$(f_{2254}/v'f_o)$	$(f'_{2254}/v'f_o)$
S1	240	0.719	0.848	12.1	12.1	0.80	0.94	0.94	1.01	1.01
S2	180	0.637	0.798	13.7	15.6	0.78	0.98	0.96	1.05	1.04
S3	150	0.578	0.76	14.1	17.5	0.73	0.96	0.95	1.03	1.02
S4	120	0.495	0.704	15.6	20.8	0.72	1.03	0.97	1.10	1.05

表-11 実測固有振動数の計算値比

 $f_{29}=f_o$, f_{2254} : 自重による実測固有振動数, $v': E_c=20.4$ GPa として修正した値 = $v\sqrt{20.4/23.6}$

断面による鉄筋無視の E_cI から求まる固有振動数

ひび割れ断面の剛性を求めるのに、全せいhの代わり に有効せいdを用いて修正すると、長期載荷時固有振動 数の計算値に対する比(f2254/vfo, f2254/vfo)は、平均で 0.97 となる。また、コンクリートの弾性係数をコアコンクリ ートの値 20.4GPa で修正するとその比(f2254/vfo, f2254/vfo) は、平均 1.04 となり、いずれもほぼ良い推定を示す。各 計算値 fcal に対する実測値の比を表-11、図-11 に示す。

図-12には、短期載荷実験時の固有振動数と v'f_o計算 値に対する比を示す。すべての試験体で端部降伏し、試 験体 S3 は中央も降伏した。計算降伏荷重までは,計算 値比 1.05 程度を示しその後徐々に低下する。降伏後除荷 により計算値比は 0.9~1.0 程度を示し,動的な剛性は静 的なものと異なった性状を示す。崩壊機構を形成した試 験体 S3 は,大きく剛性低下した。

6. まとめ

乾燥収縮ひずみの拘束を受け,ひび割れを生じる鉄筋 コンクリート造スラブの長期ならびに短期載荷実験か ら以下のことが明らかになった

- 乾燥収縮ひずみの拘束により、ひび割れが発生し動 的な剛性が長期的にかなり低下し、当初の値に比べ 0.72~0.80となった。
- 2) 動的な剛性は、たわみによる静的な剛性に比べ平均 で7%程度高い値を示し、短期載荷実験でも初期は 同程度の値を示した。
- 3) ひび割れを生じる長期的な固有振動数の推定には 全せいhの代わりに有効せいdを用いて修正すると, 比較的良い推定値が得られた。更に,実際のコンク リート弾性係数で修正すれば短期・長期を含めて降 伏荷重程度までの振動数をよく予測できる。

参考文献

- CEB-FIP: Model Code1990, London, Thomas Telford, 1990
- ACI 318-05: Building Code Requirements for Structural Concrete and Commentary, 2005
- 日本建築学会:鉄筋コンクリート構造計算基準・同 解説,1999
- 4) 井野 智他:大たわみの発生した鉄筋コンクリート 床スラブの1次固有周期,日本建築学会学術講演会 梗概集構造系,pp.1557-1558,1979
- Yamamoto, T.: Change in Dynamic Properties of Reinforced Concrete Slabs, Transactions of JCI, pp.581-588, 1984
- 山本俊彦他:高強度コンクリートのクリープ・収縮 および拘束ひび割れに関する実験、セメント・コン クリート論文集, No.61, pp.420-726, 2007