論文 付着劣化を模擬した ASR 劣化コンクリート梁の破壊挙動

水田 真紀*1・藤井 洋介*2・葛目 和宏*3・児島 孝之*4

要旨:本研究では、ASR 劣化が過度に進行し、鉄筋の付着劣化やスターラップ破断が生じた RC 梁の曲げ耐荷性能を把握することを目的とし、実験を行った。コンクリートには、ペシマムを生じる配合で反応性骨材を使用し、実際に ASR 膨張を生じさせた。また、鉄筋の付着劣化については、グリスとビニールテープで非付着部分を設けることにより模擬し、スターラップは供試体作製前に曲げ加工部分を切断し、設置した。その結果、コンクリートと鉄筋間の付着劣化は RC 梁の曲げ耐荷挙動に大きく影響し、ASR 劣化が過度に進行し、スターラップも破断すると、せん断ひび割れが卓越し、脆性破壊する可能性があることを示唆した。 キーワード: ASR、付着劣化、スターラップ破断

1. はじめに

ー般に ASR により劣化したコンクリート構造物にお いて, 膨張を拘束する鉄筋が適切に配筋されていれば, ケミカルプレストレスが導入され, 耐荷力に顕著な低下 はないと言われてきた。しかしながら近年, ASR による 劣化が顕在化してきた橋脚や土中に埋設されたフーチ ングの鉄筋の曲げ加工部分に破断が生じている事例が 報告されている¹⁾。

さらに ASR による膨張は, 発生するひび割れによりコ ンクリートと鉄筋との間の付着性状に大きく影響して いると考えられる。また, ASR によるコンクリートと鉄 筋間の付着劣化は, かぶりコンクリートの剥落, 耐荷力 の低下, 破壊形式の変化など RC 構造物の曲げ耐荷挙動 に悪影響を及ぼすことも懸念される。

そこで本研究では, 過度に ASR 劣化が進行したコンク

リート構造物の安全性を評価することを目的として,ス ターラップ破断と主鉄筋の付着劣化を模擬した RC 梁の 曲げ載荷試験を行った。

2. 実験概要

2.1 ASR コンクリートの配合

本実験で使用した材料の一覧を表-1 に、示方配合を 表-2に示す。ここで、非反応性骨材のみを使用した No.7、 8 供試体の配合も同時に示している。反応性骨材には、 JIS A 1145(化学法)で無害でないと判定された安山岩系 反応性骨材を使用した。また、供試体作製前にペシマム 試験を実施し、粗骨材では反応性骨材:非反応性骨材 =50:50、細骨材では70:30の割合を決定した。さらに、 反応を促進させるために、コンクリートの目標アルカリ 量を 12.0(kg/m³)となるよう NaCl を添加した。

供試体 No.	材料		略記	性質			
	セメント		С	普通ポルトランドセメント			
	細骨材	非反応性	S1	野洲川産川砂			
		反応性	S2	北海道産安山岩系砕砂			
No.1~6	粗骨材	非反応性	G1, G2	能登産砕石(G1:粒径 5~13mm, G2:粒径 13~20mm)			
		反応性	G3	北海道産安山岩系砕石			
	混和剤		AD	AE 減水剤(リグニンスルホン酸化合物とポリオールの複合体)			
	塩分		NaCl	精製塩			
	セメント		С	普通ポルトランドセメント			
No.7, 8	細骨材		S 1	高槻産硬質砂岩砕砂			
	粗骨材		G1, G2	高槻産硬質砂岩砕石			
	混和剤		AD	AE 減水剤(リグニンスルホン酸化合物とポリオールの複合体)			

表-1 使用材料一覧

*1 立命館大学 理工学部都市システム工学科助教 工博 (正会員)

*2 立命館大学大学院 理工学研究科創造理工学専攻 博士前期課程 2 年 (非会員)

*3 (株) 国際建設技術研究所 代表取締役社長 (正会員)

*4 立命館大学 理工学部建築デザイン学科教授 工博 (正会員)

供試体 No.	W/C (%)	単位体積重量(kg/m³)							N. Cl	
		W	С	細骨材		粗骨材		AD	INACI	
				S 1	S2	Gl	G2	G3		(Kg)
No.1~6	62	168	271	258	631	250	250	491	0.271	20.1
No.7, 8	62	168	271	874	_	492	492	_	0.271	_

表-2 コンクリートの示方配合

図-1 供試体概要

2.2 実験要因

供試体一覧を表-3 に、供試体概要を図-1 に示す。 図-1 には、付着劣化を模擬した状況とスターラップを 破断させた位置, コンタクトチップ取付位置についても 同時に示している。

図-1より、供試体は300×150×1400(mm)とし、せん 断スパン有効高さ比 a/d=2.0 となるよう,2 点対称曲げ載 荷を行った。引張側鉄筋には D13 を使用し、有効高さ d=265(mm)の位置に2本配置した。そして、支点の外側 で曲げ上げることにより、十分な定着を確保した。 さら に、 圧縮側鉄筋には D10 を 2 本、 スターラップには D6 を 150(mm)間隔でせん断スパンに配置し、主鉄筋比は 0.64%, せん断補強筋比は 0.28% とした。ここで, 使用し たすべての鉄筋の規格は SD295 である。また、基準とな る No.1 供試体を除き、 すべての供試体で、 スターラップ の引張側曲げ加工部分を破断させた。

表-3より、実験要因はコンクリートの劣化レベルと 付着劣化レベルとした。本研究では、かぶりの剥落やス ターラップ曲げ加工部の破断するほど,過度にASR劣化 が進行したコンクリート構造を対象としている。しかし ながら,現段階では ASR 劣化度と付着状況を定量的に関 連付けることは困難である。よって,本研究では,特に 引張側鉄筋の定着部の付着劣化に着目し、 コンクリート の膨張量を変化させた実験を実施した。また、コンクリ

	10 10	仄叫件 見	
供試体 No.	コンクリート	スターラッフ゜	付着
No.1	健全	健全	健全
No.2	健全	破断	健全
No.3	レベル I	破断	レベル I
No.4	レベル I	破断	レベルエ
No.5	レベル	破断	レベル I
No.6	レベル	破断	レベルエ
No.7	健全	破断	レベル I
No.8	健全	破断	レベルⅡ

2

供試休___

ートの膨張量と付着劣化度の対応を見るため、各コンク リート膨張量において、付着劣化度を変化させた実験も 行った。まず、コンクリートの劣化度は、供試体表面に 取り付けたコンタクトチップ間をコンタクトスレイン ゲージで測定した供試体軸方向と周方向の平均値から, 膨張量 2000 µ (ASR 劣化レベル I) と 5000 µ (ASR 劣 化レベルⅡ)の2水準とした。また、付着劣化度は、図 -1 に示すように、引張側鉄筋の定着側とスターラップ の引張側に、完全にコンクリートとの付着がなくなるよ うグリスとビニールテープで非付着部を設けて、2水準 の付着劣化を模擬した。それぞれ非付着部の範囲から, 30%としたものを付着劣化レベル I, 50%としたものを 付着劣化レベルⅡと呼ぶことにする。

図-2 載荷試験前の ASR 劣化状況

表-4 コンクリートの圧縮試験結果

供封休 No	圧縮強度	静弹性係数		
供訊件 NO.	(N/mm ²)	(kN/mm ²)		
No.1, 2	32.9	21.9		
No.3, 4	31.9	16.6		
No.5, 6	23.3	17.1		
No.7	35.7	25.5		
No.8	39.7	28.2		

すべての供試体は、打設2日後に脱型し、7日間の散 水養生を行った。その後、載荷試験まで、No.1、2供試 体は室内暴露、No.7、8は散水養生、No.3~6は温度40℃、 R.H.100%の環境で促進養生を行った。また、圧縮強度試 験用の供試体として、 ϕ 100×200(mm)の円柱供試体を作 製し、RC 梁供試体と同様の環境条件下に暴露した。こ こで、ASRにより膨張させた No.3、4 供試体は約100日 後、No.5、6 は約1年後に目標膨張量に達したことを確 認し、速やかに載荷実験を実施した。

3. 載荷試験前の ASR 劣化状況

3.1 コンクリートの劣化

表-4 に曲げ載荷試験実施時のコンクリートの圧縮強 度と静弾性係数の結果,表-5 に載荷試験時の超音波伝 播速度の結果を示す。ここで,超音波伝播速度の結果と は,供試体軸方向の断面中央での測定値と,軸直角方向 の3箇所(支点上と支点間中央)での測定値の平均値で ある。これより,ASR劣化していない No.1,2 や No.7, 8 供試体に比べ,ASR劣化した No.3~6 供試体の圧縮強 度,静弾性係数,超音波伝播速度すべての測定値が下回 り,ASR による膨張によりコンクリートが劣化している 様子がうかがえた。

3.2 ひび割れ性状

図-2に、No.3~6供試体のひび割れ発生状況を示す。 ここで、幅が 0.2(mm)以上のひび割れは赤線で示してい る。すべての供試体で、亀甲状にひび割れが多数発生し、 3.1 節で示した圧縮強度、静弾性係数、超音波伝播速度

表-5 超音波伝播速度結果							
供封休 Na	軸方向	軸直角方向	平均				
供訊件 NO.	(m/s)	(m/s)	(m/s)				
No.1	4310	4360	4335				
No.2	4320	4410	4365				
No.3	3850	3830	3840				
No.4	3870	3820	3845				
No.5	3690 3890		3790				
No.6	3500	3560	3530				
No.7	4420	4470	4445				
No.8	No.8 4430		4465				

図-3 荷重-変位関係

の結果と同様,ASRによる劣化が進行していることが確認できた。

膨張量 2000 μ (ASR 劣化レベル I)の No.3,4 供試体 では、幅 0.2(mm)以上のひび割れは少ないものの、供試 体全面にわたって多数のひび割れが発生した。そして、 さらに劣化を進行させた膨張量 5000 μ (ASR 劣化レベル II)の No.5,6 供試体では、No.3,4 供試体よりも多く のひび割れが発生し、幅 0.2(mm)以上のひび割れも増加 した。0.2(mm)以上のひび割れは、供試体軸方向に伸びて いるものが多く、中でも引張側鉄筋に沿ったひび割れで は、最大幅 1.5(mm)のものを確認した。

120

100

 $(\widetilde{\underline{z}})$ 80

檀 60

20

0

Ē 豪 40

非付着部を設けることにより,付着劣化を模 擬した引張側鉄筋の定着部周辺に着目すると, 引張側鉄筋に沿ったひび割れが確認できるも のの, ランダムな方向に多くのひび割れが発生 していた。それに対し,支間中央部の非付着部 を設けていない部分では引張側鉄筋に沿った ひび割れが卓越し、ひび割れ幅も大きくなった。 これは、非付着部を設けていない圧縮側鉄筋に 沿ったひび割れについても,同様の傾向が見ら れた。このように非付着部とそれ以外の部分の ひび割れ発生状況が異なったのは、ASR によ る膨張量が 2000 µ あるいは 5000 µ 以上であっ ても、コンクリートと鉄筋間の付着が消失して いなかったことを示唆している。

4. 曲げ載荷試験結果および考察

4.1 スターラップ破断の影響

図-3 に、コンクリートが劣化していない、引張側鉄 筋に非付着部を設けていない No.1,2供試体の荷重-変 位関係を示す。ここで変位は、支点間中央と支点部分の RC梁供試体下縁に取り付けた変位計によって測定した。 そして、図-3に示す変位とは、支点間中央の変位から 支点の変位を差し引いた値であり、他の供試体でも同様 とした。

いずれの供試体も,引張側鉄筋が降伏した後,載荷点 間の圧縮側コンクリートが圧壊する曲げ引張破壊によ り終局に至った。ここで、図-3には最大荷重までの挙 動を示しており、その後、圧縮側コンクリートの破壊に よって荷重が減少した。また,鉄筋が降伏するまでの挙 動はほぼ同じであった。しかし、スターラップを破断さ せた No.2 供試体では,破壊時の変位が No.1 供試体の半 分以下に低下した。このことより,一般的にはスターラ ップの配筋により RC 梁の靭性率が向上するが, 破断し ていると大きな変形能力を発揮できないことがわかっ た。

4.2 ASR 劣化と付着劣化の影響

(1) 終局荷重

図-4に終局荷重と ASR 劣化レベルの関係を, 付着劣 化レベルごとに示す。これより、付着劣化レベルIにお いて、コンクリートが ASR 劣化していない健全なものに 比べ, 膨張量 2000 µの ASR 劣化レベル I では 10% 程度, 膨張量 5000 µ の ASR 劣化レベルⅡでは 20%程度,終局 荷重が低下した。そして,付着劣化レベルⅡについては, ASR 劣化レベルに拘らず、コンクリートが健全な場合よ り ASR 劣化した供試体の終局荷重は約 30%低下した。

図-5に終局荷重と付着劣化レベルの関係を、ASR劣

化レベルごとに示す。これより、コンクリートが ASR 劣化していない健全な供試体について終局荷重を比較 すると、非付着部を30%とした付着劣化レベルⅠ、非付 着部を 50%とした付着劣化レベルⅡ,いずれの場合も 40%程度,付着劣化を模擬していない No.2 供試体より低 下した。このような傾向は、ASR 劣化させた供試体につ いても同様に観察され、また同じ付着劣化レベルでは終 局荷重に差異がなかった。このことから、ASR による膨 張量が 5000 µ 程度までであれば, ASR による劣化レベル よりも、付着劣化を模擬した非付着部の範囲の方が終局

図-8 載荷試験終了後のひび割れ状況

供試体 No.	実験値(kN)	計算值 (kN)					
	Du	曲げ	曲げせん断				
	Pu	Pu	Vc	Vs	Vc+Vs		
No.1	125.4	90.7	88.7		146.1		
No.2	111.7	90.7	88.7		146.1		
No.3	62.6	90.6	87.8		145.2		
No.4	47.2	90.6	87.8	57 1	145.2		
No.5	58.25	89.1	79.1	57.4	136.5		
No.6	46.5	89.1	79.1		136.5		
No.7	70.0	91.0	91.2		148.6		
No.8	64.9	91.4	94.5		151.9		

表-6 終局荷重の実験値と計算値

荷重に与える影響が大きいことがわかった。

(2) 荷重一変位関係

図-6 と図-7 に,各付着劣化レベルの荷重-変位関 係を示す。4.2(1)より,本研究の範囲内では,終局荷重 に関して ASR 劣化レベルよりも付着劣化レベルの方が 大きく影響したが,荷重-変位関係の初期剛性や終局荷 重までの変形挙動には違いが見られた。

いずれの付着劣化レベルにおいても、ASR 劣化レベル I の場合の初期剛性は健全なコンクリートの場合と同 程度であったが、ASR 劣化レベルIIではわずかに低下し た。さらに、膨張量が5000 µのASR 劣化レベルIIのNo.5、 6 供試体では、45(kN)付近で荷重一変位関係が大きく変 化し、緩やかに変位が増加したが、コンクリートが健全 あるいは膨張量が2000 µ (ASR 劣化レベルI)の供試体 では、No.4 供試体を除いて急激に荷重が低下した。一方、 健全なコンクリートのNo.7、8 供試体の場合、急激な荷 重の低下の後も荷重が増加し、ASR 劣化した供試体とは 異なる挙動を示した。これは、スターラップに曲げ加工 部分の破断や非付着部が設置されていたものの、その他 の部分の付着は健全であることから,スターラップがせん断力に対してある程度抵抗したものと考えられる。

コンクリートが健全で,スターラップを破断させてい ない No.1 供試体のように曲げ引張破壊する RC 梁では, 引張側鉄筋が降伏することにより荷重-変位関係が大 きく変化し、急激に変形が増大する。しかし、図-6と 図-7 に示した供試体はすべて,支点間中央の引張側鉄 筋が降伏せず, No.1 供試体に比べて変形も小さかった。 それにも拘らず, コンクリートの ASR 劣化レベルによっ て荷重-変位関係に違いが見られたのは、 コンクリート と鉄筋間の付着性状が異なることを示唆している。コン クリートが健全あるいは膨張量 2000 μ (ASR 劣化レベル I)の場合の荷重-変位関係は、異形鉄筋の片引き付着 試験を行って得られる荷重-すべり関係に似ており、膨 張量 5000 µ (ASR 劣化レベルⅡ)の場合のそれは, 丸鋼 の付着試験で得られる荷重-すべり関係に類似してい る。つまり, ASR による膨張量が 2000 μ 程度であれば, コンクリートと鉄筋間の付着は健全なコンクリートと 同等であるが、膨張量が 5000 μ にもなると付着劣化が相

当進行しているものと考えられる。

以上より, ASR 劣化に伴うコンクリートと鉄筋間の付 着劣化は, RC 梁の曲げ耐荷性状に大きく影響すること がわかった。しかし,本研究では,付着劣化をグリスと ビニールテープで模擬したため,設定した ASR 膨張量で 予想される付着劣化を過大に評価した可能性がある。し たがって,今後, ASR 劣化レベルと付着の関係を実験や 解析により確認する必要があるであろう。

(3) 破壊状況

図-8 に、曲げ載荷試験終了後のすべての供試体のひ び割れ状況を示す。まず No.1 と No.2 供試体を比較する と、スターラップを破断させることによりせん断スパン のひび割れ本数が減少し、引張側鉄筋に沿ったひび割れ が観察された。このようなひび割れ発生状況の違いが、 図-3 の変形性状の相違に繋がったものと推察される。

次に、健全なコンクリートである No.7、8 供試体や膨 張量が 2000 µ (ASR 劣化レベル I)の No.3, 4 供試体で は、せん断スパン内の付着部と非付着部の境目からせん 断ひび割れが発生し、図-6 と図-7 に示したように急 激に荷重が低下した。しかしその後も荷重、変位ともに 多少増加し、荷重が増加しなくなったことから試験を終 了した。一方, 膨張量 5000 µ (ASR 劣化レベルⅡ)の No.5, 6 供試体では、付着劣化レベルの違いによる大き な違いは観察されなかった。また、ASR 劣化レベル Iの 場合と比較すると、曲げ載荷により新たに発生したひび 割れの本数が少なくなり、せん断スパンの大きな斜めひ び割れのみが発生,進展した。このことからも, 4.2(2) 項で述べたのと同様に、膨張量が 2000 μ 程度であれば、 健全コンクリートと同程度のコンクリートと鉄筋間の 付着が見込めるが、膨張量 5000 μ 程度になると相当に付 着劣化が進行しているものと推察できる。

表-6 に,終局荷重の計算値と実験値を示す。計算で は、コンクリートの圧縮強度 f'cには載荷試験時の実験値、 鉄筋の降伏点強度 fyには規格値 295(N/mm²)を用いた。ま た、せん断耐力については参考文献²⁾を参照し、斜め引 張破壊する場合のせん断耐力を算出した。本研究では、 基準となる No.1 供試体について、曲げ破壊荷重とせん断 に対するコンクリートの負担分がほぼ同程度になるよ うに、RC 梁の断面形状および主鉄筋比を設定した。し たがって、ASR 劣化によるコンクリート圧縮強度の低下、 そして破断や付着劣化によるスターラップのせん断負 担分の減少により、破壊形式がせん断破壊へと移行する 可能性がある。

予想していたように、コンクリート、スターラップと もに健全な RC 梁(No.1 供試体)では曲げ引張破壊に至 ったが、その他の No.3~8 供試体では破壊形式が変化し た。スターラップを破断させ、引張側鉄筋の定着部分や

スターラップの一部に非付着部を設けることにより, ASR 劣化レベルに拘らず,変形能力が小さくなり,せん 断スパンの斜めひび割れの進展が顕著に観察された。し かし、斜めひび割れが載荷点付近を貫く、一般的なせん 断破壊の一つである斜め引張破壊とは少し異なった破 壊であった。このような破壊となった理由として、①ス ターラップを破断させ、一部を非付着部としたものの、 その他の部分ではある程度の付着が保たれ、せん断力を 負担し,斜めひび割れの進展を妨げたこと, ②引張側鉄 筋の一部を非付着部としたものの、端部の曲げ上げによ り十分な定着が得られ、タイドアーチ機構を形成したこ と、③ASR 劣化により生じたひび割れが、外力を受ける ことにより発生するひずみを分散させたこと、の可能性 が考えられる。しかしながら、コンクリート、スターラ ップ,コンクリートと鉄筋間の付着が健全であれば曲げ 破壊を生じる RC 梁であっても、ASR によりコンクリー トや鉄筋との付着が劣化し、スターラップが破断した場 合, せん断ひび割れが卓越し, 破壊が脆性的になる可能 性があることを示唆した。

5. 結論

本研究では,ASR 劣化が過度に進行し,スターラップの破断や深刻な主鉄筋の付着劣化が見込まれる RC 梁の曲げ載荷試験を行った。得られた結果を以下に述べる。

- コンクリートは健全で、スターラップを破断させた 場合、大きな耐力低下は見られなかったが、脆性的 な破壊になった。
- (2) コンクリートと鉄筋間の付着劣化が RC 梁の曲げ耐 荷挙動に大きな影響を与えることがわかった。しか し、ASR 劣化レベルによりコンクリートと鉄筋の付 着性状が異なり、本研究では ASR 膨張量が 2000 µ 程 度であれば、健全なコンクリートと同等の付着を見 込めることがわかった。
- (3) 曲げ破壊を生じる RC 梁であっても、ASR 膨張によりコンクリートと鉄筋間の付着が劣化し、スターラップが破断した場合、せん断ひび割れが卓越し、破壊が脆性的になる可能性があることを示唆した。

参考文献

 1) 葛目和宏ら:「ASR 劣化の生じた道路橋の維持管理 について」、コンクリート工学、Vol.42、No.6、2004
2) 二羽淳一郎:「コンクリート構造の基礎」、数理工学 社、pp.77、2006

謝辞

本論文は、(㈱ピーエス三菱・山村智氏が実施した結果 も含めたものであることを記し、ここに謝意を表します。