論文 既存建物袖壁付き柱のせん断補強に関する実験的研究

近藤 龍哉^{*1}·伴 幸雄^{*2}·加藤 三晴^{*3}·山本 泰稔^{*4}

要旨:「居ながら補強」が可能な補強パネルの開発と効果の検証実験を行った。補強パネルは既存袖壁付き柱 と接着系アンカーで接合する。両袖壁付き柱・片袖壁付き柱,枠外付け補強・枠内付け補強の4種類を検討 した。せん断耐力の上昇は既存袖壁付き柱の1.35倍~1.93倍程度になった。設計用強度を最大強度の80%程 度に見たとき,変形性能はF=2.0程度に向上した。強度上昇量には補強パネル水平接合部のアンカー強度が 影響する。枠外付け時はアンカーに斜めにせん断力が加わるため,その水平成分のみが強度上昇値になる。 キーワード:袖壁付き柱,既存建物のせん断補強,居ながら補強,実験研究

1. はじめに

耐震診断対象の既存RC造中層集合住宅で長手方向 低層部のIs値がIso値を僅かに下回る建物が多い。こう した既存RC造中層集合住宅の長辺方向の補強を目的 に、袖壁付き柱のせん断性能を向上させる「居ながら補 強」方法を提案し、その効果の確認実験結果を記す。

集合住宅の長辺方向の構面は袖壁付き柱が多い。この 袖壁付き柱に建物外側から補強パネルをとり付けて, せ ん断耐力の上昇と変形性能の向上を狙った。

鉄骨枠補強パネルの4辺は鉄骨枠(山形鋼)で,これに 壁縦横筋を溶接配筋する。鉄骨枠にはアンカー止め付け 用に穿孔を施す。既存枠(柱・上下梁)に接着系アンカー で止め付ける。その後に壁面モルタルを打設する。

実験は両袖壁付き柱と片袖壁付き柱について行った。 また,柱・梁・袖壁が外面合わせにあるものを意識して 枠材の側面に補強パネルを取り付けたもの(枠外付け)と 内面合わせを意識して枠材の内側に補強パネルを取り 付けたもの(枠内付け)を行った。比較試験体として既存 袖壁付き柱2体を加えて合計6体の実験を行った。

2. 試験体の設計と加力について

2.1 試験体諸元

(1) 既存袖壁付き柱

既存両袖壁付き柱試験体(E-A-D)と既存片袖壁付き柱 試験体(E-A-S)の諸元を表-1に記す。1971年以前に設計 された既存建物を想定して丸鋼を用いた。試験体の形状 は補強パネルを付けたものも含めて図-1に示す。

(2) 補強パネル

補強パネルは厚さ75mmで、山形鋼(L-75×60×3.2 お よびL-60×60×3.2)で4辺を枠取りして、縦横筋はD6(σ y=364N/mm²)を山形鋼に溶接した。後打ちしたモルタル

*1 工学院大学 工学部建築学科准教授 博(工) (正会員)
*2 矢作建設工業(株) 技術部 (正会員)
*3 株式会社ピタコラム 技術部 (正会員)
*4 芝浦工業大学 名誉教授 工博 (正会員)

表-1 試験体諸元

柱内法	高さho(mm)	1000	備考
コンクリ	ート圧縮強度Fc(N/mm ²)	17.83	
柱軸力	N(kN)	337.5	0.3Fc
反曲点	高さhcwo(mm)	500	加力方式
	柱幅b(mm)	250	
柱	柱せいDc(mm)	250	
	柱有効せいd(mm)	217.5	
てて時	袖壁厚さt1(mm)	60	
てじ生	袖壁長さLw1(mm)	450	
袖壁付	き柱せいL'(mm) (両袖/片袖)	1150/700	
柱主	引張鉄筋断面積at(mm ²)	531	4-13 <i>¢</i>
筋	pt(%)	0.85	
	降伏強度σy(N/mm ²)	327	
	帯筋断面積aw(mm ²)	56.5	6φ@170
世故	間隔X(mm)	170	
'市'肋	pw	0.0013	
	降伏強度σwy	306	
袖壁 せん 断補	縁縦筋断面積aw1(mm²)	12.6	4φ
	縦筋縁端距離dwt1(mm)	25	
	横筋断面積ah1(mm ²)	12.6	4φ@100
	横筋間隔Xs1(mm)	100	
強筋	ps1	0.0021	
	横筋降伏強度σsy1	263	

の圧縮強度は σ_B=66.4N.mm²。接着系アンカーは D10(σ y=387N/mm²)を用いた。詳細を図-4・図-5 に示す。

2.2 既存袖壁付き柱の設計強度

E-A-D と E-A-S の設計強度値を表-2・表-3 に記す。終 局強度は参考文献¹⁾の(付 3-2)式~(付 3-5)式による。なお, Qsu3 と Qsu4 は表記を割愛した。何れも 1.9 倍から 2.5 倍程度の余裕度でせん断破壊先行型である。

曲げ	be(mm)	101.3
降伏	曲げ終局強度Mw(kNm)	238.9
強度	Qmw(kN)	478
	be(mm)	127.9
	de(mm)	667.5
	pte(%)	0.622
	je(mm)	584.1
	pwe* σ wy(N/mm ²)	0.451
	$\sigma oe(N/mm^2)$	4.52
	M/(Q*de)	0.435
	(同)補正値	1
せん	Qsu1(kN)	189.9
Nor 1.6		
断終	be(mm)	101.3
断終 局強	be(mm) de2	101.3 1125
断終 局強 度	be(mm) de2 pte(%)	101.3 1125 0.011
断終 局強 度	be(mm) de2 pte(%) je(mm)	101.3 1125 0.011 984.4
断終 局 度	be(mm) de2 pte(%) je(mm) pwe*σwy(N/mm ²)	101.3 1125 0.011 984.4 0.474
断 局 度 度	be(mm) de2 pte(%) je(mm) pwe* σ wy(N/mm ²) σ o(N/mm ²)	101.3 1125 0.011 984.4 0.474 3.38
断 局 度	be(mm) de2 pte(%) je(mm) pwe* σ wy(N/mm ²) σ o(N/mm ²) M/(Q*de)	101.3 1125 0.011 984.4 0.474 3.38 0.435
断局度	be(mm) de2 pte(%) je(mm) pwe*σwy(N/mm ²) σo(N/mm ²) M/(Q*de) (同)補正値	101.3 1125 0.011 984.4 0.474 3.38 0.435 1
断局 度	be(mm) de2 pte(%) je(mm) pwe*σwy(N/mm ²) σo(N/mm ²) M/(Q*de) (同)補正値 Qsu2(kN)	101.3 1125 0.011 984.4 0.474 3.38 0.435 1 152.1

表-2 E-A-Dの設計強度

表-3 E-A-S の設計強度

	be(mm)		127.9
曲げ 降伏 強度	Mw(kNm)	254.0	
	Mu(kNm)		64.1
	(Mw+Mu)/	[′] 2	159.1
		Qmw(kN)	318
		be(mm)	127.9
		pte(%)	0.622
		je(mm)	584.1
	Οεμ1Α	pwe* σ wy(N/mm ²)	0.451
	QSUTA	$\sigma {\rm oe}({ m N/mm}^2)$	4.52
		M/(Q*de)	0.714
		(同)補正値	1
		QsuA(kN)	189.9
	Qsu1B	be(mm)	250.0
		pte(%)	0.8496
		j(mm)	190.3
せん		pwe* σ wy(N/mm ²)	0.407
断終		$\sigma o(N/mm^2)$	7.09
局強		M/(Q*de)	0.714
度		(同)補正値	1
		QsuB(kN)	137.2
	Qsu1(kl	163.6	
		be(mm)	127.9
		pte(%)	0.304
	Qsu2	j(mm)	560.0
		pwe* σ wy(N/mm ²)	0.451
		$\sigma o(N/mm^2)$	4.71
		M/(Q*de)	0.714
		(同)補正値	1
		166.9	
	Qsu(k	167	

図-1 試験体形状(単位:mm)

2.3 加力方法

図-2 に示す加力装置で軸力とせん断力を加える。試験 体に生じる曲げモーメントの反曲点高さは試験体内法 高さの 1/2 に調整した。軸力ジャッキで所定の軸力を加 えた後, せん断力ジャッキで層間変位を目安に変位制御 で R=±1/1000rad を 1 サイクル, R=±1/500rad, ±1/250rad, ±1/125rad, ±1/83rad を各 2 サイクル, ±1/63rad と± 1/50rad を 1 各サイクル漸増載荷した。

2.4 既存袖壁付き柱の配筋詳細

E-A-D の配筋詳細を図-3 に示す。E-A-S は E-A-D の左 側袖壁・梁が無い形に等しい。また,補強パネルで補強 した試験体の既存部分は E-A-D および E-A-S に等しい。

図-4 N-M-D 試験体補強パネル枠外付け取り付け詳細(単位:mm)

2.5 補強パネルの配筋と取り付け詳細

補強パネルを既存部分枠材に外付けした N-M-D の補 強パネル取り付け詳細を図-4 に示す。また、補強パネル を既存部分枠材に内付けした N-S-D の補強パネル取り付 け詳細を図-5 に示す。なお、片袖壁付き柱に枠外付けし た N-M-S は N-M-D と同様で、片袖壁付き柱に枠内付け した N-S-S は N-S-D と同様である。

3. 実験結果

3.1 耐力と変形性能について

図-6 に Qc-R 曲線を示す。また,表-4 に各試験体の最 大強度と各層間変形角に対する強度を記す。各層間変形 角は代表的 F 値に対応し,F 値と層間変形角の関係は参 考文献¹⁾の(14)式・(16)式の終局層間変形角とF 値の関係 式による。

図-6 柱せん断力(Qc)-層間変形角(R)曲線

Б	試験体名称	両袖壁付き柱試験体			片袖壁付き柱試験体			/# *
К		E-A-D	N-M-D	N-S-D	E-A-S	N-M-S	N-S-S	1佣~~5
1/500rad.	Qc(kN)	280	387	467	158	186	266	
	Qc/Qcmax*	-	1.22	1.48	-	1.04	1.49	F=0.8
	Qc/Qcmax (%)	89%	80%	80%	88%	77%	77%	
	Qc(kN)	306	445	540	176	224	310	
1/250rad.	Qc/Qcmax*	I	1.41	1.71	I	1.25	1.73	F=1.0
	Qc/Qcmax (%)	97%	92%	93%	98%	92%	90%	
	Qc(kN)	180	476	576	141	238	338	
1/150rad.	Qc/Qcmax*		1.51	1.82		1.33	1.89	F=1.27
	Qc/Qcmax (%)	57%	99%	99%	79%	98%	98%	
	Qc(kN)	117	475	562	115	236	342	F=1.5
1/123rad.	Qc/Qcmax*		1.50	1.78		1.32	1.92	
	Qc/Qcmax (%)	37%	98%	96%	65%	98%	99%	
	Qc(kN)		402	463	72	180	290	
1/81rad.	Qc/Qcmax*		1.27	1.47		1.01	1.62	F=2.0
	Qc/Qcmax (%)		83%	80%	40%	75%	84%	
最大強度	Qcmax(kN)	316	483	583	179	242	345	
	Qc/Qcmax*	_	1.53	1.84	_	1.35	1.93	
	∆ Qc=Qcmax-Qcmax*	_	167	266	-	63	166	
	Rqcmax(rad.)	1/292	1/135	1/133	1/277	1/128	1/129	
Qcmax:各試験体の最大強度, Rqcmax:各試験体の最大強度時層間変形角								
Qcmax*:(N-M-DとN-S-Dに対してはE-A-Dの最大強度), (N-M-SとN-S-Sに対してはE-A-Sの最大強度)								

表-4 補強パネルで補強した袖壁付き柱の耐力と変形性能

既存袖壁付き柱に比べ補強パネルで補強した柱は 1.35 倍から 1.93 倍程度強度上昇した。また,設計用強度を最 大強度の 80%程度と見たとき,F=2.0 程度の変形性能が ある。加えて,最大強度前の耐力値を見ると,補強した 両袖壁付き柱は F=0.8 時の強度寄与係数もα=1.0 程度あ る。補強パネルによるせん断補強は耐力および変形性能 を大きく向上させた。

3.2 耐力機構と実験結果の検討

既存袖壁の柱際と外端の縦筋および補強パネル同位 置と枠外付けでは柱心位置の縦筋の歪を計測した(図-7)。

袖壁付き柱と補強パネルが一体で平面保持の仮定が 成り立つとすると歪計測位置の縦筋の伸縮は図-7 のよ うになる。既存袖壁付き柱(E-A-D,E-A-S)は伸縮想定と概 ね一致する(図-8)。また,補強パネルを付けたものの既 存袖壁部も N-M-S を除いて伸縮想定と概ね一致する(図 -9 左列)。一方,補強パネル縦筋の歪状況は伸縮想定と まったく異なっている(図-9 右列)。よって,袖壁付き柱 と補強パネルは別個にせん断力に抵抗していると考え る。補強パネルを付けた袖壁付き柱の耐力は補強パネル の耐力と既存袖壁付き柱の耐力の和だと考えた。

本試験体で、補強パネルのモルタル強度は極めて大き かった。既存部と補強パネルの接合部分(接着系アンカ ー)の損傷が目立った。よって、補強パネルの強度は接合 部の強度と考え、接合部の検討を以下で行う。

表-5に各試験体の水平接合部(梁との接合部)のアンカ 一強度値を記す。計算は参考文献²⁾の(3.9.4-7)式~ (3.9.4-9)式, Ec は計算値で参考文献³⁾の表3)を用いた。 なお,参考文献²⁾の解図 3.9.4-2(a)より実強度は設計値の 1.25 倍程度と見た。 枠外付け補強パネルの抵抗機構を図-10 と考える。反 カ中心間距離を la=0.8×補強パネル幅として,圧縮材方 向に生じる水平接合部反力はアンカー強度 Qa(表-5)に 等しいとして,この水平成分 QaH は ΔQc(表-4)に概ねー 致する(表-6)。枠内付け補強パネルの抵抗機構を図-11 と考える。水平接合部反力(QA)をアンカー強度と摩擦力 (補強パネルの分担軸力×0.5)の和とすると ΔQc に概ね 一致する(表-7)。以上より,枠外付け補強はアンカーの 圧縮材方向の強度が主因子である。枠内付け補強はアン カーの水平方向の強度が主因子だが,軸力による摩擦力 が加算され,表-4の結果は46kN~60kN 程度過大である。

図-9 既存部袖壁縦筋と補強パネル縦筋の歪状況

表−5 接着系アンカー強度計算値							
水平接合部アンナ	〕一強度	備考					
sAe(mm ²)	71.3	D10					
$\sigma y(N/mm^2)$	397	試験値					
$\sigma B(N/mm^2)$	17.83	試験値					
Ec(N/mm ²)	17940	計算値					
Qa1(kN/1本)	19.8						
Qa2(kN/1本)	16.1	294N/mm 以内况正					
Qa(kN/1本)	16.1	を無倪					
N-M-D (kN)	226	マンナーオ巻14オ					
1.25 倍	282	アンハー 本数14本					
N-S-D (kN)	161	マンナーオ巻10オ					
1.25 倍	202	ノノノー本致10本					
N-M-S (kN)	113	マンカーオ粉っオ					
1.25 倍	141	アンパー 本致 / 本					
N-S-S (kN)	81	マンカーオ数5本					
1 05/#	101	ノノハー中致5平					

4. まとめ

1.25代

鉄骨枠に縦横筋を溶接して,鉄骨枠を介して既存部と

101

図-10 枠外付け補強パネルの抵抗機構の想定

表-6 枠外付け補強パネル水平接合部の必要強度

試験体	$\Delta Qc(kN)$	Qa(kN)	Ha(mm)	la(mm)	QaH(kN)		
N-M-D	167	282	1190	920	173		
N-M-S	63	141	1190	560	60		
la=補強パネル幅×0.8 とした。							

枠内付け補強パネルの抵抗機構の想定 図-11

表-7 枠内付け補強パネル水平接合部の必要強度

試験体	$\Delta Qc(kN)$	Qa(kN)	Ap/ΣA	N(kN)	QA(kN)		
N-S-D	266	202	0.367	337	276		
N-S-S	166	101	0.274	337	156		
軸カ分担率=Ap/ΣA:補強パネル断面積/全断面積							

接着系アンカーで接合し, 強度の高いモルタルを後打ち した補強パネルのせん断補強効果は耐力およびF値を大 きく改善する。補強パネルによる強度増加量は水平接合 部のアンカー強度にあたる。なお、枠外付け時にはアン カーは斜め方向にせん断力を受けるので、この水平成分 が補強による強度増加量にあたる。

参考文献

- 1) 既存鉄筋コンクリート造建築物の耐震診断基準同 解説,(財)日本建築防災協会,2001年改定版
- 既存鉄筋コンクリート造建築物の耐震改修設計指 2) 針同解説,(財)日本建築防災協会,2001年改定版
- 3) 鉄筋コンクリート構造設計規準・同解説、日本建築 学会, 1999年