論文 コンクリートのひび割れ自己治癒材料の造粒技術に関する基礎的研究

小出 貴夫*1・岸 利治*2・安 台浩*3・森田 卓*4

要旨:ジオマテリアル(粘土鉱物)を含むひび割れ自己治癒材料は,ひび割れに対する良好な自己治癒性能 を有するが,水との反応性・吸水性が高い微粉末材料であり,コンクリートに混和するとフレッシュ性状が 低下する課題があった。この課題を解決するため,ひび割れ自己治癒材料にバインダとして低熱セメントお よび水を加えて転動造粒し,粒径および嵩密度を増大させた造粒物を得た。そして,この造粒物を細骨材置 換で 40kg/m³混和した W/C=56.5%の繊維補強コンクリートの物性を検討した。その結果,造粒物を使用する ことでコンクリートのフレッシュ性状の改善が可能であり,また自己治癒性能を有することを確認した。 キーワード:ひび割れ,自己治癒,ジオマテリアル,造粒,バインダ,繊維補強コンクリート,通水試験

1. はじめに

ひび割れからの漏水防止を目的とした自己治癒材料 (以下,SH 材料と略記)に関しては、これまでに膨張 材、炭酸塩、ジオマテリアル等を含む材料を用いた報告 がなされている^{1),2)}。ジオマテリアル(Geo-Materials)は、 砂・粘土・岩あるいはガスハイドレード等の自然界で堆 積・形成された地盤材料の総称である。ジオマテリアル を含む無機系SH 材料のひび割れ自己治癒機構は、SH 材 料と水との反応による膨張・膨潤作用・ポゾラン反応等、 水中に溶存するCO₂との炭酸化反応等の複合作用と考え られている³⁾。なお、筆者らが使用しているジオマテリ アルは、アルミノシリケート等の粘土鉱物である。

粘土鉱物を含む SH 材料は、比較的少ない混和量かつ 水セメント比の高いコンクリート(セメント置換で 22kg/m³混和した W/C=47%)においても、通水状態で良 好なひび割れ自己治癒性能を発現するが^{2),3)},粘土鉱物 を含む SH 材料は、水との反応性・吸水性が高い微粉末 材料であるため、コンクリートのフレッシュ性状(スラ ンプ)が著しく低下するという課題があった。この課題 を解決するため、粉体表面に熱可塑性・撥水性・遮水性 等の機能を有するコーティング膜を形成させるマイク ロカプセル化技術⁴⁾,あるいは製薬等で用いられている 流動層式造粒技術、噴霧乾燥式造粒技術⁵⁾等を適用する ことは技術的に可能であるが、これらは高価な装置を必 要とし、また装置の処理能力が低いため、コンクリート のひび割れ自己治癒材料の改質技術としては不向きで あると考えられた。

そこで本研究では、装置が単純かつ低コストで処理可 能な転動式造粒技術を用いて、粘土鉱物を含む SH 材料 にバインダ材料を加えて造粒することによって、粒径お よび嵩密度を増大させ、コンクリートに混和した際のフ レッシュ性状の低下を防ぐことを目的とした。また、得 られた SH 材料造粒物を細骨材置換で繊維補強コンクリ ート(以下, FRCと略記)に混和し、FRCの物性やひび 割れ自己治癒能力について基礎的な検討を行った。

2. 試験概要

2.1 試験概要および項目

シリーズ1では、粘土鉱物を含む SH 材料の転動式造 粒方法について検討を行った。粉体工学において造粒 (Granulation)とは、粉体・溶融液・水溶液等から、所 望の粒径・形状の粒状物・粉体成形物を作る操作と定義 され、造粒の基本的メカニズムは、①成長様式による造 粒、②圧密様式による造粒・成形、③液滴発生様式等に よる造粒があり、いずれもバインダ(液体・粉体)を必 要とする⁶。そのため、転動式造粒装置に対する材料の 仕込み量、バインダの添加量、装置の回転数、装置ドラ ム(パン)の角度、造粒時間等のパラメータは、予備造 粒試験を行って決定した。得られた SH 材料造粒物の物 性として、粒度、密度、圧壊荷重を測定した。

シリーズ2では、シリーズ1で得られたSH材料造粒 物を細骨材とみなし、W/C=56.5%のベースコンクリート に対して、細骨材置換で40kg/m³混和した自己治癒コン クリートを生コン工場において実機製造した。その後、 アジテータ車にビニロン繊維を手投入して自己治癒 FRCとした。この自己治癒FRCのフレッシュ性状およ び圧縮強度について、SH材料無添加のFRCおよびSH 材料を粉体添加したFRCと比較検討した。また、枡形試 験体およびφ100mm×h200mm円柱供試体を作製し、材 齢 3~4ヶ月で通水試験を行い、ひび割れの自己治癒性

*1 住友大阪セメント(株) セメント・コンクリート研究所(正会員)
*2 東京大学 生産技術研究所 教授 博(工)(正会員)
*3 東京大学 生産技術研究所 助教 博(工)(正会員)
*4 (元)東京大学大学院 工学系研究科社会基盤学専攻 修士課程(正会員)

能についても比較検討した。

2.2 使用材料および配合

シリーズ1の造粒用材料を表-1に示す。SH 材料は、 これまで検討してきたジオマテリアル(粘土鉱物)^{2),3)} を含む改良型を使用した。造粒用の粉体バインダには、 水和反応の遅い C_2S を多く含有する低熱セメントを、液 体バインダには、上水道水を使用した。また、ひび割れ 部における水和物析出量を増大させ、自己治癒性能を高 める目的で ϕ 27 μ m×長さ 6mm のビニロン短繊維⁶⁾を使 用し、造粒時に 0.08kg/m³外割添加した。さらに、転動 式造粒時の二次造粒(仕上げ)工程において、造粒物の 表層に緻密なバインダ層を形成させるため、シリカフュ ームを低熱セメントに混合して使用した。

シリーズ2のFRC 用材料を表-1に示す。SH 材料は, 粉体およびシリーズ1で得られた造粒物を使用した。セ メントは普通セメント,細骨材は陸砂および砕砂の混合 砂, 粗骨材は硬質砂岩砕石および石灰石砕石の混合砕石 を使用した。FRC 用繊維は、 ϕ 660 μ m×長さ 30mm のビ ニロン繊維を使用した。FRC 配合を表-2 に示す。FRC のベースコンクリートは, W/C=56.5%, 呼び強度 27N/mm², 目標スランプ 21cm, 目標空気量 4.5%の配合 とした。SH 材料は、粉体および造粒物のいずれも細骨 材とみなし、40kg/m³置換した。この際,SH 材料の密度 も細骨材と同一とみなして配合修正は行わなかった。高 性能 AE 減水剤は、実機製造試験が夏期であったため遅 延形を使用し, 固形分も含め練混ぜ水の一部とみなした。 ビニロン繊維の混合量は、ベースコンクリートに対して 外割りで 0.5vol%=6.5kg/m³とし, 荷卸直前にアジテータ 車に手投入し, 60 秒間高速攪拌して FRC とした。

2.3 造粒方法および試験方法

シリーズ1において、転動式造粒装置は、パンペレタ イザに代表される専用装置を使用せず、**写真-1**に示す コンクリート用傾胴式ミキサ(容量 100L,モータ出力 2.2kW)を使用した。事前に行った予備造粒試験の結果 より,造粒時のミキサ胴体の角度は,水平状態から約15 度上げ,回転数は40rpmで行うこととした。

造粒物の材料構成を表-3に示す。液体バインダ(水) 量は、粉体(SH材料+粉体バインダ)に対して21.0%(造 粒物全体の材料構成では17.7%)とした。

転動式造粒のフローを図-1に示す。造粒操作1バッ チあたりの仕込み量は、約18.2kgとした。転動式造粒は、 傾胴式ミキサにSH材料・ビニロン短繊維・低熱セメン ト(粉体バインダ所要量の68.3%)を投入し、転動しな がら水(液体バインダ所要量の87.3%)を手動式スプレ で噴霧し、約15分間転動して一次造粒物とした。一次 造粒物は、最大粒径を5mm以下とするため目開き 4.75mmのふるい(JISZ8801)を用いて分級し、ふるい の上に残った粒径の大きな造粒物は、粉砕後、再度転動 式造粒を行って4.75mmふるいを全通させた。ふるいを 通過した一次造粒物は、傾胴式ミキサに戻し、低熱セメ ントおよびシリカフューム(粉体バインダ所要量の 31.7%)を加え、水(液体バインダ所要量の12.7%)を噴 霧しながら約5分間転動し、二次造粒物を得た。二次造

写真-1 傾胴式ミキサを用いた転動式造粒の様子

主	1	土土 木 川
1x —		171 11+

		1	× · · · · · · · · · · · · · · · · · · ·	
シリーズ	材料	種類	その他の物性等	記号
	SH材料	ジオマテリアル(粘土鉱物)含有材料粉体	嵩密度:約0.7g/cm ³ ,密度:2.64g/cm ³ ,BET比表面積:約20~30m ² /g	SH-P
		低熱ポルトランドセメント	密度:3.24g/cm ³ , C ₂ S:53%, ブレーン比表面積:3400cm ² /g	LC
(造物田)	バインダ	シリカフューム	密度:2.21g/cm ³ , SiO ₂ :92%, BET比表面積:17.1m ² /g, 中国産	SF
(追松用)		上水道水	千葉県産	w
	繊維	ビニロン短繊維	密度:1.3g/cm ³ , φ27μm×長さ6mm	PVA-f1
	セメント	普通ポルトランドセメント	密度:3.15g/cm ³ , C ₃ S:52%, ブレーン比表面積:3400cm ² /g	LC
	水	上水道水	千葉県産	W
	細骨材	茨城県産陸砂+栃木県産砕砂	混合砂の表乾密度:2.59g/cm ³ ,吸水率:1.3%,FM:2.50	S
2	粗骨材	茨城県産硬質砂岩砕石+栃木県産石灰砕石	混合砕石の表乾密度:2.62g/cm ³ ,吸水率:0.6%,FM:6.60,Gmax=20mm	G
(FRC用) -	CU111	ジオマテリアル(粘土鉱物)含有材料粉体	嵩密度:約0.7g/cm ³ ,密度:2.64g/cm ³ ,BET比表面積:約20~30m ² /g	SH-P
	31119 11	ジオマテリアル(粘土鉱物)含有材料造粒物	嵩密度:約1.0g/cm³,密度:2.41g/cm³,FM:3.97	SH-G
	繊維	ビニロン繊維	密度:1.3g/cm ³ , φ660μm×長さ30mm	PVA-f2
	化学混和剤	高性能AE減水剤	JIS A 6201 遅延形 I 種	SP

表-2 配合

「、クリート番粒	W/C	s/a	目標	目標	目標 単位量(kg/m ³)					PVA-f2
コンクリート性類	(%)	(%)	スランプ(cm)	空気量(%)	W	С	SH材料	S	G	外割添加(kg/m ³)
FRC(プレーン)							—	934		
FRC-SH粉体	56.5	52.3	21±3	4.5±1.5	175	310	SH-P 40	894	869	6.5
FRC-SH造粒							SH-G 40	894		

粒物は、20℃で7日間密封養生し、FRCに混和した。

SH 材料粉体の粒度分布は, エタノールを分散溶媒と してレーザー回折・散乱式粒子径粒度分布測定装置で測 定した。SH 材料造粒物の粒度分布は, JIS A 1102 に準じ てふるい分けによって測定した。SH 材料の嵩密度(見 掛け密度)は, JIS K 7365 に準じて測定し,密度は He ガスを用いた気相置換法によって測定した。SH 材料造 粒物の圧壊荷重は,二次造粒直後および材齢7日に目開 き 3.35mm ふるいを用いて分級し,ふるい上に残った造 粒物を 20 個無作為抽出し,JIS Z 8841 に準じて測定した。

シリーズ 2 において, FRC の実機製造は,2010 年 8 月に生コン工場の容量 $3m^3$ の二軸強制練りミキサを使用 し、1 バッチの練混ぜ量を $1.5\sim2.0 m^3$ として行った。練 混ぜは、全材料を投入後、ミキサの負荷電力値が安定す るまで 120 秒間練り混ぜた。練混ぜ後、アジテータ車に 積み込み、生コン工場から約 60 分間かけて実験場所に 輸送した。荷卸直前にビニロン繊維を手投入して FRC と し、荷卸直後のコンクリート温度・スランプ・空気量を 測定した。その後、写真-2 に示す枡形試験体(外部寸 法 $0.9m \times 0.75m \times h1.0m$,溜水部内寸法 $0.5m \times 0.5m \times$ h0.8m,枡壁厚 $0.1\sim0.2m$,有筋、コンクリート量 $0.48m^3$) および ϕ 100mm × h200mm 円柱供試体(無筋)を作製し た。枡試験体は材齢7日で脱型し、枡試験体上部に蓋を して雨水が溜まらないように屋外気中養生した。

表-3 造粒物の材料構成(%)

なお、通水試験用供試体にはひび割れ導入を容易にする ために型枠内面に2本のプラスチック製アングル(10mm ×10mm×14mm)を対極するように敷設し、切欠部を設 けた。円柱供試体は、材齢7日で脱型し、圧縮強度試験 用は標準養生とし、通水試験用は20℃封かん養生とし た。圧縮強度の試験材齢は、7日・28日・91日とした。

枡形試験体の通水試験は、材齢 86 日で油圧ジャッキを用いて枡内部から荷重をかけ、枡壁2面(厚さ100mm・150mm)にひび割れを導入し、ひび割れ間隔の保持を目的として部分的にφ0.2mmの針金を挿入した。ひび割れの幅は、マイクロスコープを用いて枡形試験体外側の上端面から100mm間隔で測定した。この後、材齢91日から上水道水を溜水し、漏水量の経時変化を測定した。

写真-3 に示す円柱供試体の通水試験は,材齢 120 日 で脱型後,耐圧試験機を用いて供試体の切欠部に2本の 三角形鋼棒を敷設して割裂し,ひび割れを導入した。ひ び割れ幅は,3本の鋼製ホースクランプを用いて表面部 のひび割れが約 0.2~0.4mm となるように調整した。ひ び割れ幅は,マイクロスコープを用いて円柱供試体の上 下面各3点(計6点)を測定した。また,円柱供試体上 面に溜水用のφ100mm×h100mmの塩ビ管を接続し,通 水試験時の水頭が約 80mm(水圧:約 0.8kPa)となるよ うに調整した。供試体側面および塩ビ管との接続部分は, シリコーンゴムを用いて止水した。この後,20℃室内に おいて,上水道水を用いて塩ビ管に常時溜水させる連続 通水条件および1日に1回断続的に溜水させて乾湿を繰 り返す条件とし,それぞれ漏水量の経時変化を測定した。 なお,円柱供試体は全て n=3 とした。

写真-2 枡形試験体打設の様子

写真-3 円柱供試体を用いた通水試験の様子

3. 試験結果および考察

3.1 シリーズ1(造粒物の物性)

SH 材料の粉体および造粒物を写真-4 に示す。SH 材 料粉体の粒度頻度分布を図-2 に示す。SH 材料造粒物の 粒度分布を図-3 に示す。SH 材料の粉体および造粒物 (材齢7日)の物性を表-4 に示す。

写真-4、図-2 および表-4 より、SH 材料粉体は、 密度=2.64g/cm³とコンクリート用細骨材とほぼ同じ値で あるが、嵩密度は約0.7g/cm³と非常に小さい。また粒径 は、約1~600µmの範囲内で、BET 比表面積が20~ 30m²/g に達する。これは、多孔質の材料あるいは層状構 造を有する材料を含有するためであり、これらが、SH 材料粉体をコンクリートに混和した際にフレッシュ性 状を低下させる一因と考えられる。一方、SH 材料造粒 物は、粒径0.6~5mmのものを多く含有する球状粗大粒 子である。造粒物の密度は2.41g/cm³であり、造粒前の 粉体より約10%小さくなっているが、これは造粒時に添 加した水およびシリカフューム等の影響と考えられる。 また、造粒物の嵩密度は約1.0g/cm³であり、造粒前の粉 体より約40%大きくなっている。以上より、SH 材料を 造粒物とすることにより、粒径および嵩密度を増大させ

写真-4 SH 材料粉体 (左)および SH 材料造粒物 (右)

ることが可能であることを確認した。SH 材料造粒物の 圧壊荷重を表-5 に示す。造粒物の圧壊荷重は、二次造 粒終了直後では、平均 2N 程度と非常に小さかったが、 FRC に混和した材齢7日においては、平均 34N まで増大 した。今回、圧壊荷重の測定は、粒径 5mm 前後の造粒 物を 20 個無作為に抽出して行ったが、材齢7日で標準 偏差 10N,変動係数 28%とかなりのバラツキが見られた。 なお、粒径 3mm 未満の造粒物の圧壊荷重は、装置の性 能上、測定することができなかった。

3.2 シリーズ2(FRCのフレッシュ性状および強度)

FRC のフレッシュ性状および圧縮強度を表-6 に示す。 今回の実機製造は、高温期(気温 32℃)であり、また荷 卸直前にビニロン繊維を加えて FRC としたため, スラン プロス対策として、ベースコンクリートの高性能 AE 減 水剤(以下, SPと略記)を若干過剰添加した。プレーン FRC の場合, SP 添加量=C×1.3%において荷卸時スラン プが 20.5cm であり, ほぼ目標値であった。FRC-SH 粉体 の場合, SP 添加量は C×2.75% とプレーンの 2 倍以上で あり,荷卸時スランプが17.5cmとやや小さかった。一方, FRC-SH 造粒の場合, SP 添加量は C×2.5% であり, 荷卸 時スランプが 23.5cm で若干材料分離気味であった。SH 造粒物を混和した場合,SH 粉体を混和した場合より, 少ない SP 添加量で大きなスランプが得られていること から、造粒によりフレッシュ性状が改善されたと考えら れる。空気量は、出荷時はいずれの配合もやや低めであ ったが、荷卸時には目標値前後であり、問題はなかった。 圧縮強度は、いずれの配合も材齢に伴って増大している が,SH 材料を混和した場合は、プレーンより圧縮強度 が高くなった。材齢91日強度に関して、SH材料粉体を 用いた場合はプレーンより 22%高く, SH 材料造粒物を

図-3 SH 材料造粒物の粒度分布

衣一4 SH材料材体あよいSH材料道粒物(材節/ロ)の物性								
SH材料種類	最大粒径	最小粒径	BET比表面積	FM	嵩密度	密度		
	(mm)	(µm)	(m ² /g)	(粗粒率)	(g/cm ³)	(g/cm ³		
粉体(SH-P)	約0.7	1~2	約20~30	-	約 0.7	2.64		
造粒物(SH-G)	約5	約75	—	3.97	約 1.0	2.41		

 表-5
 SH材料造粒物(3.35mmふるい上)の圧壊荷重

 二次造粒完了直後
 材齢7日

 圧壊荷重(N)
 2
 34

 標準偏差(N)
 1
 10

 変動係数(%)
 32
 28

表-6 フレッシュ性状および圧縮強度	
--------------------	--

っい クリート 毎 粒	製造量	SP	スラン	プ(cm)	空気	量(%)	温度	(°C)	圧約	諸強度(N/ı	nm²)
コンソリード性現	(m ³)	(C×%)	出荷	荷卸	出荷	荷卸	出荷	荷卸	7日	28日	91日
FRC(プレーン)	2.0	1.30	24.5	20.5	3.7	5.3	30	32	20.0	25.2	47.6
FRC-SH粉体	1.5	2.75	20.5	17.5	4.2	6.2	31	32	20.6	27.3	58.1
FRC-SH造粒	1.5	2.50	23.0	23.5	2.0	4.5	30	34	25.3	32.1	61.8

用いた場合はプレーンより 30%高くなった。プレーンよ り強度が高くなった原因は,SH 材料をセメント置換で はなく,細骨材置換で 40kg/m³ 混和したためと考えられ る。特にSH 材料造粒物の場合,造粒時のバインダとし て用いた低熱セメントおよびシリカフュームが未水和 のまま残存し,強度増進に寄与した可能性が考えられる。 荷卸後のフレッシュコンクリート中および円柱供試体 上端研磨面に確認されたSH 材料造粒物を写真-5 に示 す。今回使用したSH 材料造粒物は,コンクリートの実 機製造時に崩壊せず,残存することが確認された。

3.3 シリーズ2(FRCの通水試験)

枡形試験体に導入したひび割れ幅の測定結果を表−7 に示す。枡の南北に面した外壁2面に関して、枡の上端 面から 100mm 間隔でひび割れ幅を測定した。ひび割れ の幅は、いずれの配合も上端面に近いほど大きく、枡底 面に近くなるほど小さくなった。また、プレーンおよび SH 粉体の枡形試験体の平均値は約 0.2mm であったが、

SH 造粒枡形試験体の平均値は 0.4~0.5mm と大きかった。 これは、側面の中央付近にひび割れ幅制御目的で横方向 に設置した埋込み鉄筋の長さが短かったため、鉄筋の定 着長が足りずに付着切れが生じ、ひび割れ幅の制御が不 可能になったためである。枡形試験体の通水試験結果を 図-4 および表-8 に示す。枡に溜水を開始し、満水と なった直後の水面低下深さを 10 分間隔で 90 分後まで測 定した。その結果、SH 造粒枡形試験体は漏水が激しく 水面が大きく低下した。SH 造粒枡形試験体は、ひび割 れ幅の修正が困難であったため測定を行わなかった。

SH 粉体枡形試験体は,経時に伴って水面の低下速度 がプレーン枡形試験体よりも遅くなり,止水性が確認さ れた。枡形試験体を用いた通水試験では,SH 粉体の止 水効果はプレーンより高いと考えられた。

φ100mm×h200mm 円柱供試体を用いた連続通水試験
 の結果を図−5 に示す。同じく乾湿繰返し通水試験の結
 果を図−6 に示す。これら通水試験は、円柱供試体下面
 のひび割れから流出する漏水量を5分間計測したもので
 あり、供試体3本の平均値を使用した。その結果、連続
 通水の場合は、配合に関係なく通水直後から漏水量が大
 きく減少したが、6日以降はほとんど変化せず、完全に

写真-5 コンクリート中に確認された SH 材料造粒物

は止水されなかった。また,連続通水開始から 21 日目 の止水性は,配合の違いによる差異は認められなかった。 繰返し通水の場合は,連続通水の場合と同様に通水直後 から漏水量が減少し,乾湿を繰り返すのに伴って徐々に 漏水量が減少した。なお,造粒物を混和した配合が,最 も漏水量が少なく,ある程度の止水性(自己治癒能力) を有することがわかった。

連続通水試験のひび割れ幅指数の変化を図-7 に示す。 同じく乾湿繰返し通水試験のひび割れ幅指数の変化を 図-8 に示す。前述の漏水量による評価は,ひび割れ幅 やひび割れの凹凸等の違いにより,漏水量(流量)の初 期値が大きくばらついていた。そのため,初期のばらつ きを排除するため,式(1)に示す二次元ポアズイユ式にお ける漏水量(流量)qは,ひび割れ幅wの3乗に比例す るという関係を用いて,漏水量qの三乗根をとることで, 式(2)に示すひび割れ幅指数とした。また,自己治癒の進 行によって変化するひび割れ幅を相対的に評価するた め,初期のひび割れ幅指数からの変化量をひび割れ幅指 数の変化として算出し,ひび割れ幅の変化の相対的な評 価の検討を行った。

$$q = C \cdot \frac{b \cdot \Delta P}{12 \cdot \mu \cdot L} w^3 \tag{1}$$

ここに、q:漏水量(mm³/s), C:ひび割れの凹凸を考慮した係数, b:ひび割れの長さ(mm), ∠P:水圧差(N/mm²), µ:水の粘性係数,L:水路長(mm),w:ひび割れ幅(mm)

$$W = \sqrt[3]{q}$$

$$W = W' - W'_{0} = \sqrt[3]{q} - \sqrt[3]{q_{0}}$$
(2)

ここに, w': ひび割れ幅指数 (mm), q:流量 (mm³/s) W: ひび割れ幅変化指数(mm),

1

w'0,:初期のひび割れ幅指数 (mm), $\sqrt[3]{q}_0$:初期流量 (mm³/s)

表-7 枡形試験体に導入したひび割れ幅の測定結果(通水前)

枡上端部からの距離	プレーン(mm)		SH粉体	k(mm)	SH造粒(mm)		
(mm)	北面	南面	北面	南面	北面	南面	
100	0.43	0.36	0.30	0.33	0.59	0.65	
200	0.39	0.24	0.26	0.27	0.68	0.71	
300	0.23	0.36	0.47	0.40	0.71	0.62	
400	0.29	0.40	0.16	0.26	0.65	0.44	
500	0.12	0.21	0.21	0.18	0.58	0.30	
600	0.08	0.12	0.13	0.12	0.26	0.25	
700	0.11	0.10	0.08	0.10	0.30	0.14	
800	0.07	0.07	0.05	0.04	0.20	0.14	
平均	0.22	0.23	0.21	0.21	0.50	0.41	

※枡壁のコンクリート厚さ:北面=150mm,南面=100mm

図-4 枡形試験体の通水試験結果

表-8 枡形試験体の通水試験結果(水面低下深さの変化)

\land	水面低下深さ(cm)								
	0-3日間 3-10日間 10-21日間 21-32日間								
	73時間経過	160時間経過	263時間経過	256.5時間経過					
プレーン	6.8	11	5.5	3.6					
SH粉体	7.1	8.2	3.5	2.5					

図-5 および図-7 より,連続通水した場合,初期漏水 量が最も多かった SH 粉体は,ひび割れ幅指数の低下量 が大きいため,止水効果も高くなっていると考えられた。 プレーンおよび SH 造粒のひび割れ幅指数の低下量は同 程度であるため,止水性は同程度と考えられた。図-6 お よび図-8 より,乾湿繰返し通水した場合,ひび割れ幅指 数は,いずれの配合も通水1日目に増大するが,その後, 徐々に低下した。21日目において SH 粉体および SH 造 粒の止水効果はプレーンより高いと考えられた。

今回検討した造粒技術により,粘土鉱物を含む SH 材 料を用いたフレッシュコンクリートのハンドリングを 改善し,長期材齢を経たコンクリートに自己治癒性能を 担保する効果を期待しているが,造粒物の組成・粒度等 が,ひび割れの自己治癒性能に及ぼす影響,造粒物によ るひび割れ自己治癒のメカニズムの検証,造粒条件の最 適化等は今後の課題である。また,コンクリート硬化体 中に残存する造粒物が,コンクリートの長期耐久性に及 ぼす影響の検証も必要であると考えられる。一方,通水 試験方法に関して,試験体の形状,ひび割れの導入方法,

図-8 乾湿繰返し通水試験のひび割れ指数の変化

評価方法の更なる検討・改良が必要であると考えられる ため、これらも今後の課題としたい。

4. まとめ

以下、本研究によって得られた知見を示す。

- (1) 粘土鉱物を含む無機系ひび割れ自己治癒材料に バインダとして低熱セメントおよび水を加えて 転動式造粒を行うことによって、粒度および嵩密 度を増大させた造粒物が得られた。
- (2) 造粒物を細骨材置換で 40kg/m³ 混和した W/C=56.5%の繊維補強コンクリートを夏期に実 機製造した。その結果,造粒物を使用することで コンクリートのフレッシュ性状の改善が可能で あることを確認した。
- (3) φ100mm×h200mm 円柱供試体を用いた通水試験 によって、自己治癒材料の造粒物を混和した場合 でも、自己治癒材料粉体と同程度の自己治癒性能 があることを確認した。

謝辞

本研究の遂行に際し、自己治癒コンクリートに関して は、小林 薫氏 (JR 東日本)、松田芳範氏 (JR 東日本)、 細田 暁准教授 (横浜国立大学大学院)から貴重なご意 見を頂きました。また、繊維補強コンクリートに関して は、閑田徹志氏 (鹿島建設)から貴重なご意見を頂きま した。ここに、謝意を表します。

参考文献

- 山田啓介,細田暁,在田浩之,岸利治:膨張材を用 いたコンクリートのひび割れ自己治癒性能,コンク リート工学年次論文集, Vol.29, No.1, pp.261-266, 2007.7
- 小松怜史,細田彰,安台浩,池野誠司:ひび割れで 通水する自己治癒コンクリートの治癒性状,コンク リート工学年次論文集, Vol.30, No.1, pp.117-122, 2008.7
- Tae-Ho Ahn et al : Crack Self-Healing Behavior of Cementitious Composites Incorporating Various Mineral Admixture, ACT, Vol.8, No.2, pp.171-186, 2010.6
- 小石眞純,江藤桂,日暮久乃:造る+使うマイクロ カプセル,工業調査会,pp.202-271,2005.10
- 5) 伊藤光弘:図解粉体機器・装置の基礎,工業調査会, pp.92-106, pp.314-338, 2005.2
- 佐藤良恵,小出貴夫,小田部裕一,岸利治:ひび割れの自己治癒機構に関する基礎的検討,第64回セメント技術大会講演要旨,pp.160-161,2010.5