# 論文 収縮・クリープを考慮した超高強度鉄筋コンクリート柱の短期水平挙 動の FEM 解析

堀川 真之\*1·田嶋 和樹\*2·白井 伸明\*3

要旨:コンクリートの時間依存挙動が RC 構造物の破壊メカニズムに及ぼす影響を解明することは、非常に 重要である。本研究では、約4年間にわたる高強度 RC 柱部材の長期軸圧縮載荷実験を解析対象に収縮およ びクリープを連成可能とする解析モデルを構築し、解析結果の妥当性を確認した。また、時間経過解析から 予測された応力状態を初期応力として瞬間解析に反映することで、収縮・クリープを考慮した RC 柱の破壊 過程を概ね模擬できた。

キーワード: 超高強度コンクリート,鉄筋コンクリート柱,収縮,クリープ,3次元 FEM 解析

#### 1. はじめに

我が国では、1980年代から鉄筋コンクリート(以下, RC)造建物の高層化に伴い、高強度コンクリートが使用 されるようになった<sup>1)</sup>。しかし、高層 RC 造建物の下層 柱には高軸力が作用するため、コンクリートの時間経過 に伴うクリープ変形が顕著となることが問題視されて いる。このような背景から近年では小室ら<sup>2)</sup>や高森ら<sup>3)</sup> により高層 RC 造構造物の下層階柱を想定した軸方向力 長期載荷実験が行われ、クリープを原因とした軸力保持 限界の低下や繰返し載荷による耐力低下が顕著になる ことが示されている。また、A.E.Schultz ら<sup>4)</sup>は、軸方向 の長期圧縮載荷により RC 柱の曲げ・せん断耐力、せん 断ひび割れ時強度およびエネルギー散逸の低下が生じ ることを実験的に確認しており、これらの原因として軸 応力再分配のメカニズムおよび帯筋拘束の影響を挙げ ている。

本研究の目的は、種々のコンクリートの時間依存挙動 が RC 構造物の破壊メカニズムに及ぼす影響を力学的に 解明することである。本報では、特にクリープの問題に 着目し、高森らの実験<sup>3)</sup>を対象として、収縮・クリープ 解析モデルを構築するとともに、長期載荷の影響が RC 柱の耐震性能に及ぼす影響を解析的に検討する。

#### 2. 収縮・クリープ解析概要

#### 2.1 解析対象試験体概要

表-1 に材料特性,図-1 に試験体の概要を示す。実験では,凝結始発とともに自己収縮の計測が始まり,脱型後には乾燥収縮の計測も始まった。続いて,材齢28日における軸力載荷時からクリープひずみの計測も開始され,材齢1400日まで収縮ひずみおよびクリープひ

\*1 日本大学大学院 理工学研究科建築学専攻 (正会員)
\*2 日本大学 理工学部建築学科助教 博士 (工学) (正会員)
\*3 日本大学 理工学部建築学科教授 工博 (正会員)

表-1 材料特性

| コンクリート                                      |       |       |        |  |
|---------------------------------------------|-------|-------|--------|--|
| 材齢 [日]                                      |       | 28    |        |  |
| <b>圧縮強度 [ N/mm<sup>2</sup> ]</b>            |       | 150.7 |        |  |
| ヤング係数 [ ×10 <sup>4</sup> N/                 | mm² ] | 4.34  |        |  |
| 圧縮強度時ひずみ [ μ                                | ]     | 3713  |        |  |
| 割裂引張強度 [ N/mm <sup>2</sup> ]                | ]     | 7.33  |        |  |
| ポアソン比 [-]                                   |       | 0.201 |        |  |
|                                             |       |       |        |  |
| <u>コンクリート</u>                               |       |       |        |  |
| 材齢 [日]                                      |       | 1443  |        |  |
| 圧縮強度 [N/mm <sup>2</sup> ]                   |       | 177   |        |  |
| ヤング係数 [×10 <sup>4</sup> N/mm <sup>2</sup> ] |       | 4.70  |        |  |
| 圧縮強度時ひずみ [μ]                                |       | 4046  |        |  |
| 割裂引張強度 [N/mm <sup>2</sup> ]                 |       | 7.70  |        |  |
| ポアソン比 [-]                                   |       | 0.22  |        |  |
|                                             |       |       |        |  |
| 鉄筋                                          |       |       |        |  |
| 鉄筋種類                                        | D13   | D16   | U6.4   |  |
| 降伏点 [N/mm <sup>2</sup> ]                    | 720.2 | 739.7 | 1374.0 |  |
| 弹性係数 [×10 <sup>5</sup> N/mm <sup>2</sup> ]  | 1.91  | 1.99  | 2.10   |  |

|              | 引引                                                                | 長強さ        | [N/mm <sup>2</sup> ] |              | 931.2                    | 931.2 | 1431.0      |     |
|--------------|-------------------------------------------------------------------|------------|----------------------|--------------|--------------------------|-------|-------------|-----|
|              | 伸て                                                                | メ [%]      |                      |              | 9.6                      | 11.9  | 10.7        |     |
| ሀ6<br>5<br>{ | U6.4<br>5.4@50<br>ダブル<br>8-D13 <sup>.</sup><br>8-D16 <sup>.</sup> |            | 300                  |              | 40 63 47 47 63 40<br>300 |       |             |     |
| 試            | 験体名                                                               | 断面<br>[mm] | 横補強筋比<br>[%]         | 長期軸<br>N[kN] | 」軸力比<br>[-]              | ଛ∏ ₹  | <u>∲変位計</u> | 200 |
| C            | HN0. 2                                                            | 300        | 1.2                  | 4050         | 0.3                      |       |             | 1   |
|              |                                                                   | ~ 200      |                      |              |                          |       |             |     |

3777

降伏ひずみ度 [μ]

× 300

DHNO. 2

3716

6540

図-1 試験体概要

なし

なし

解析対象試験体

ずみの計測が継続された。その後、長期軸圧縮載荷を一 旦徐荷した後、正負交番繰り返し水平載荷を実施してい る。試験体寸法は実大寸法の約 1/3~1/4 であり,材齢 28 日の圧縮強度が 150[MPa]の超高強度 RC 造柱 (DHNO.2 および CHNO.2)を解析対象試験体とした。実験では,コ ンクリート打設後7日間は湿布とシートにより養生され, 材齢8日目に型枠が脱型された後,実験室に放置された。 長期軸力載荷は材齢 28 日目より開始され,軸力比 0.3(4050kN)を保つように約1400日間制御された。なお, 変位は,柱試験区間内表面に埋設したボルト間の相対変 位を変位計により測定され,これを測定区間内長さで除 して平均ひずみとしている。また,試験体内部の柱高さ 中央の位置に埋設した埋め込みひずみ計および鉄筋各 所に貼付したひずみゲージよりコンクリートならびに 鉄筋のひずみを測定している。

#### 2.2 解析モデルの概要

図-2に FEM 要素分割図を示す。コンクリート要素に は、8節点ソリッド要素を用いた。鉄筋はトラス要素と し、完全付着を仮定している。試験体のスタブは剛体と した。また、材齢28日目に定軸力(4050kN)を試験体上部 に与える。境界条件は、スタブ下面を全面ピンとした。 また、スタブ上面は、クリープ解析時に面外および面内 方向の自由度を拘束した。なお、解析は汎用解析コード DIANA9.4<sup>5)</sup>を用いた。

#### 2.2.1 自己収縮ひずみおよび乾燥収縮ひずみ

高強度コンクリートの場合,全収縮量の大部分が若材 齢時に生じる自己収縮で占められることが報告されて いる<sup>1)</sup>。本報では,自己収縮ひずみは材齢7日目までに 実験により計測された軸ひずみ約350[µ]を解析モデルに 与え,以後一定とした。また,乾燥収縮ひずみは,材齢 8日目から実験終了時までCEB-FIP model code 1990<sup>6</sup>に 示される式(1)により算定した。

$$\varepsilon_{\rm cs}(t,t_{\rm s}) = \varepsilon_{\rm cs0} \cdot \beta_{\rm s}(t-t_{\rm s}) \tag{1}$$

ここで、 $\varepsilon_{es0}$ は概念収縮係数、 $\beta_s$ は時間に伴う収縮の発達 を記述する係数、t はコンクリート材齢、 $t_s$ は収縮の開始 時におけるコンクリート材齢を表している。

## 2.2.2 クリープひずみ

DIANA では、クリープ関数を記述するために Kelvin チェーンモデルおよび Maxwell チェーンモデルを組み込 んでいる。特徴としては、前者は、クリープに伴うひず みを記述し、後者は、応力の弛緩を記述するものである。 本研究では、クリープひずみに着目した研究であるため Kelvin チェーンモデルを採用することにする。例えば、 直接入力である Kelvin チェーンモデル (図-3)における クリープ関数は式(2)のようにDirichlet級数として表現さ れる。







$$J(t,\tau) = \sum_{\alpha=0}^{n} \frac{1}{E_{\alpha}(\tau)} (1-e)^{-\frac{t-\tau}{\lambda_{\alpha}}}$$
(2)

ただし,

$$\lambda_{\alpha} = \frac{\eta_{\alpha}}{E_{\alpha}} \tag{3}$$

ここで、 $J(t,\tau)$ はクリープ関数、 $E_{\alpha}(\tau)$ はモデルの剛性、 $\eta_{\alpha}$ はダッシュポットの粘性係数、 $\lambda_{\alpha}$ は遅延時間を示す。遅 延時間  $\lambda_{\alpha}$ は、Kelvin チェーン内の各ユニットのバネの剛 性およびダンパーの粘性から決定される。直接入力の場 合、実験によりユニットの各パラメータを確認する必要 がある。

 一方,間接入力である CEB-FIP model code 1990 も提供 されている。CEB-FIP model code 1990 では、クリープ関 数およびクリープ係数を式(4)および式(5)により定義し ている。

$$J(t,t_0) = \frac{1}{E_c(t_0)} + \frac{\varphi(t,t_0)}{E_{c\,28}}$$
(4)

$$\varphi(t,t_0) = \varphi_0 \bullet \beta_{\mathcal{C}}(t-t_0) \tag{5}$$

ここで、 $J(t,t_0)$ はクリープ関数、 $E_c(t_0)$ は載荷時のコンク リート材齢における弾性係数、 $E_{c28}$ はコンクリート材齢 28日における弾性係数、 $\varphi(t,t_0)$ はクリープ係数、 $\varphi_0$ は概 念クリープ係数、 $\beta_c$ は載荷後の時間に伴うクリープの発 達を記述するための係数,t は考慮する時点におけるコ ンクリート材齢,t<sub>0</sub> は載荷時におけるコンクリート材齢 を表している。CEB-FIP model code 1990 では,クリープ 係数を求めることで簡易的にクリープ関数を決定でき る。なお,DIANA においてモデルコードによるクリープ 関数を利用する場合,モデルコードから算出されたクリ ープ関数にKelvinチェーンモデルを最小二乗法により曲 線適合させることで自動的にチェーンモデルの各ユニ ットのパラメータを決定している。本報では,クリープ ひずみは,載荷材齢28日目より実験終了時まで,CEB-FIP model code 1990 を用いてクリープ関数を算出し,Kelvin チェーンモデルを曲線適合することで各ユニットの材 料特性を決定した。

#### 2.2.3 曲線適合の検討

モデルコードを用いてKelvinチェーンモデルに曲線適 合する際、作成されるチェーン内のユニット数を指定す る必要がある。ここでは、ユニット数の違いが解析結果 に及ぼす影響を把握するために、 ユニット数をパラメー タとした要素解析を行う。表-2に材料特性,表-3に 解析パラメータ一覧,図-4に要素解析モデルを示す。 コンクリート要素には、8節点のソリッド要素を用いた。 クリープひずみは、クリープ関数を CEB-FIP model code 1990 から算出し, Kelvin チェーンモデルに曲線適合させ ることでモデル化した。また、軸力は節点荷重として材 齢28日目に各節点に与え、以後一定とした。図-5に解 析結果を示す。計算値に対して, CASE1 および CASE2 は、凹凸のある曲線として適合されているのが分かる。 一方, CASE3 では、計算値と良い対応を示している。よ って、曲線適合される際にユニット数が少ないと、解析 精度が低下することが分かる。以上のことから、本報で は、クリープ曲線を Kelvin チェーンモデルに曲線適合さ せる場合には、ユニット数を10個として解析を行う。

## 3. 収縮・クリープ解析結果の検証

実験結果は、材齢に関して温度履歴を考慮した有効材 齢を用いて評価している。しかし、今回は解析結果の検 証を目的とするため、実材齢を用いることにする。特に、 型枠脱型時(材齢8日)、載荷開始時(材齢28日目)お よび実験終了時(材齢1400日)に生じたひずみの値に 着目して検証する。

自己収縮および乾燥収縮(以下,収縮)ひずみの解析 結果を図-6に示す。材齢7日に解析モデルに与えた自 己収縮ひずみは,実験値であるためグラフの傾きを破線 で示してある。材軸直交方向(以下,横方向)のひずみ は実験値の傾向を捉えており,最終的に生じるひずみは 実験値とほぼ同等となった。一方,図-7にクリープひ ずみの解析結果を示す。計測位置による違いを模擬でき

表-2 材料特性

| 平均圧縮強度 | 150   | [ N/mm <sup>2</sup> ] |
|--------|-------|-----------------------|
| ヤング係数  | 43400 | [ N/mm <sup>2</sup> ] |
| ポアソン比  | 0.2   | [ - ]                 |
| 相対湿度   | 60    | Γ%]                   |

表-3 解析パラメーター覧

| CASE   | ユニットの数 |
|--------|--------|
| CASE-1 | 3      |
| CASE-2 | 5      |
| CASE-3 | 10     |







ていないが,実験終了時に生じたひずみの値は,実験値 と良い対応を示す結果となった。

図-8に実材齢1400日までの主筋の軸ひずみ度の推移 を示す。また、図-9には、図-8を拡大した実材齢100 日までの推移を示す。解析終了時には、コンクリートに は軸方向に収縮ひずみが 420[µ]、クリープひずみが 710[µ],弾性ひずみが 913[µ]生じている。コンクリー トと鉄筋のひずみは適合するため、主筋にも同等のひず みが伝達され、軸ひずみ度は 2043[µ]となった。しかし、 図-8 からも分かるように実験終了時には、主筋に約 2600[µ]の軸ひずみが生じている。今回の解析モデルでは、 ①温度ひずみによる影響を考慮していない点、②鉄筋と コンクリート間を完全付着としている点、および③粘弾 性モデルとひび割れモデルを併用していないなどの理 由から、主筋の軸ひずみ量を過小評価したと考えられる。 一方、図-9 からも分かるように、型枠脱型時および軸 力載荷時に生じたひずみは実験値と比較的良い対応を 示している。

#### 4. 軸応力の再分配

鉄筋コンクリートは無筋コンクリートとは異なり,コ ンクリートのクリープ変形を鉄筋が拘束するため, RC 柱内部では軸応力の再分配が生じる。図-10に主筋 D16 (図-1参照)の1本あたりの軸応力度の推移を示す。 軸ひずみ度の推移に伴い,主筋には圧縮応力が累積され, 最終的に約400[N/mm<sup>2</sup>]の圧縮応力が生じている。この結 果から全鉄筋の負担軸力を求めると,軸力載荷時には約 16[%],最終的には約25[%]まで負担率が変化しているこ とが確認できる。したがって,コンクリートから鉄筋へ

軸力が約9[%]移行したと言える。一方,実験では軸力が 鉄筋へ約10[%]移行したということが示されており<sup>3)</sup>, 解析値は概ね妥当であると考えられる。

#### 5. 帯筋拘束が柱挙動に及ぼす影響

RC 造柱に乾燥収縮などの収縮が生じる場合,収縮に より生じる横方向ひずみを帯筋が拘束するため、コアコ ンクリートには横方向に引張応力が生じる。このことは, 斜めひび割れの形成に関わると考えられ、柱のせん断強 度に影響を及ぼす可能性がある。したがって、収縮・ク リープによりコアコンクリートに生じる引張応力の発 達を評価する必要がある<sup>4)</sup>。図-11 に高さ方向中央の水 平断面内におけるコアコンクリートのx方向におけるひ ずみの推移を示す。図中には、収縮のみおよびクリープ のみを考慮した解析モデルの結果も示す。ここでは、ひ ずみの解釈に注意が必要である。収縮が生じると、コン クリートには圧縮ひずみが生じる。その後、鉄筋にひず みが適合し、鉄筋に圧縮応力が生じる。さらに、コンク リートには鉄筋との釣合を保つように引張応力が生じ る。図-11のような外力と直交する方向では、同様のこ とがコンクリートのクリープひずみと鉄筋との間に成 り立つ。材齢 28 日までは、収縮により最大で約 400[µ]



の圧縮ひずみが生じる。軸力載荷後、断面内では圧縮ひ ずみが卓越するが、その傾向はモデルにより異なる。収 縮のみを考慮した場合、収縮の影響により軸力載荷時に 生じた引張方向へのひずみが僅かに減少する。クリープ のみを考慮した場合、高軸力によるクリープによりコン クリートが膨張するため、引張ひずみが増大する。その ため、両者を考慮した場合、クリープにより生じる引張 ひずみが収縮により若干緩和されている。なお、今回の 検討では、断面内に生じる時間に伴う変化を応力で表現 していない。これは、若材齢時においてはコンクリート の強度発現が著しい段階であり、ヤング係数の値が材齢 28 日目と比べて小さいため、材齢 28 日のヤング係数を 用いて応力を評価すると過大に評価してしまう可能性 があるためである。従って、若材齢時の応力状態を評価 する際には、コンクリートのヤング係数の評価を今後の 課題として検討を行い、コンクリートの応力を正しく評 価できる手法を検討する必要がある。また、本研究は、 約 1400 日間という長期的な視点に立った研究であるた め、若材齢コンクリートに関する議論は行わないことに する。

## 6. 初期応力を考慮した RC 柱の水平変形性能の評価 6.1 DHNO.2 の解析概要および結果

#### (1) 解析概要

DHNO.2 試験体は,約1400 日間実験室に放置されてい たため、コンクリートの自己収縮および長期にわたる乾 燥収縮により,鉄筋には圧縮応力が生じ,コンクリート には引張応力が生じている。この状態を瞬間解析に反映 させるために、収縮解析により主筋および補強筋に生じ た応力を各鉄筋の構成則に初期応力として導入するこ とで実現象との整合性を計ることにした。コンクリート の材料特性は表-1に示す材齢1443日目の特性を用いる。 瞬間解析では、図-12に示す構成則を用いた。 圧縮側は Parabolic で表現し、下降域で囲まれる面積は、圧縮破壊 エネルギーGfc を要素代表長さ Lc で除した値である。 Gfc は中村らの提案式<sup>7)</sup>より求めた。引張側は下降域に 大岡ら8)の3直線モデルを用い、下降域で囲まれる面積 は、引張破壊エネルギーGfを要素代表長さLc で除した 値である。Gf は大岡らの提案式<sup>8)</sup>より求めた。要素代 表長さLcは、要素体積Vと等価な体積をもつ球の直径 とした (Lc =  $2(3V/4\pi)^{1/3}$ ) とした。鉄筋の応力-ひずみ関 係は bi-linear 型モデルとし、降伏後の2次剛性は初期剛 性の 1/100 とした。非線形反復解析法は,標準 Newton-Raphson 法を採用した。

#### (2) 解析結果および考察

図-13に DHNO.2の解析結果を示す。図中の実験結果 は骨格曲線であり、シンボルは正側で生じた各現象であ る。解析結果は、耐力を若干高く評価しているが、ポス トピークは良い対応を示しており、概ね実験結果を追随 している。さらに、曲げひび割れ点、圧壊点および最大 耐力点は、実験結果と同等の変形角で生じており破壊過 程をおおよそ模擬していると考えられる。また、収縮を









考慮した解析では耐力低下が確認できるが,これは収縮 により事前に主筋に圧縮応力が存在しており,主筋の曲 げ圧縮破壊が早期に生じたためである。

#### 6.2 CHNO.2 の解析概要および結果

#### (1) 解析概要

実験では、約 1400 日間の長期軸圧縮載荷後、軸力を 一旦徐荷し、その後軸力を再付加させ 1443 日目に正負 交番繰り返し水平載荷実験を行っている。従って、解析 では、1400 日間にわたり収縮・クリープ解析を行い、軸 力を徐荷後、さらに 43 日間の時間経過解析を行い、得 られた応力状態を初期応力として瞬間解析に反映させ る。瞬間解析では、初期応力を与えた後に軸力を再付加 させ、水平変位を強制的に与えていく。ただし、コンク リートの材料特性については、収縮・クリープを受けた 一軸の強度特性が不明であるため、今回は材齢 1400 日 目における強度特性を用いて解析を行う。

## (2) 解析結果および考察

図-14 に CHNO.2 の解析結果を示す。ここでは,長期 軸力を徐荷せずに、連続的に解析を行った結果(case2) も併せて示す。Casel では、圧壊点、主筋初圧縮降伏点 および最大耐力は同一変形角で生じており、破壊過程は 概ね良い対応を示している。一方、耐力をやや過小評価 しているが、これは、クリープひずみにより主筋に圧縮 ひずみが累加されていたためであり、解析モデルの都合 上、徐荷という現象を正確にとらえきれていない可能性 がある。一方, Case2 では, 圧壊点は Case1 と同等であ る。しかし、主筋が早期に圧縮降伏しはじめ、実験値よ りも最大耐力が 10[%]低下した。A.E.Schultz ら<sup>4)</sup>は,軸 力を徐荷せず連続的に水平載荷に移行した実験を行い, 持続荷重期間が長い程曲げ耐力が低下し、定性的ではあ るが最大で約 10[%]の耐力低下が生じる事を報告してい る。このことから、連続的に解析行った Case2 の結果も 妥当であると考えられる。



#### 7.まとめ

- 実験値および CEB-FIP model code1990 を用いて、収 縮およびクリープを連成可能とする解析モデルを 構築できた。
- 収縮・クリープ解析による RC 柱の長期性状の分析 を通じ主筋とコンクリート間の軸応力の再分配を 確認した。

- 若材齢時コンクリートの応力状態を確認するために
   は、時間経過とともに変化するヤング係数を評価する必要がある。
- 初期応力を用いて収縮・クリープの影響を考慮した場合、概ね破壊性状を模擬できる事を確認した。

## 謝辞

本研究の一部は科学研究費補助金(基盤研究(C)代表者:白井伸 明)の助成を受けて行われたものである。また,研究の遂行に あたり,株式会社フジタの実験を参考にさせていただきました。 ここに感謝の意を表します。

### 参考文献

- 社団法人日本コンクリート工学協会:高強度コンク リート構造物の構造性能研究委員会報告集,2006.7
- 小室努ほか:超高強度鉄筋コンクリート柱の長期圧 縮特性に関する考察、コンクリート工学年次論文集、 vol.30,No.3,2008
- 3) 高森直樹ほか:超高強度材料を用いた RC 造柱の耐 震性能に及ぼす長期性状の影響(その1) RC 造柱の 収縮および圧縮クリープ特性,日本建築学会大会学 術講演梗概集,2009.8
- A.E.Schultz,S.S.Welton,and L.E.Rey:Long-Term Effects on Response of Reinforced Concrete Columns to Cyclic Loading,Journal of Structural Engineering,ASCE, vol.130,No.9,pp.1320-pp1332,2004.9
- DIANA Foundation Expertise Center for Computational Mechanics: DIANA Finite Element Analysis User's Manual, TNO Building and Construction Research.,2010
- Comite Euro-International du Beton:CEB-FIP Model Code 1990
- Nakamura, H., and Higai, T.: Compressive Fracture Energy and Fracture Zone Length of Concrete, Modeling of Inelastic Behavior of RC Structures under Seismic Loads, ASCE, pp.471~487, 1999.10
- 8) 大岡督尚,橘高義典,渡部憲:コンクリートの破壊 パラメータに及ぼす短繊維混入および材齢の影響, 日本建築学会構造系論文集,第529号,pp.1-6,2000.3